AI Article Synopsis

  • Researchers explored how septal scar tissue affects the success of left bundle branch area pacing (LBBAP) in patients needing bradycardia pacing or cardiac resynchronization therapy.
  • They conducted a study with 35 patients who had preprocedural assessments using cardiac MRI to evaluate scar extent before attempting lead implantation.
  • Results showed that successful lead deployment was more likely in patients with less septal scar, indicating that extensive scar tissue may hinder the implantation process and suggesting possible alternative strategies for those patients.

Article Abstract

Background: The use of left bundle branch area pacing (LBBAP) for bradycardia pacing and cardiac resynchronization is increasing, but implants are not always successful. We prospectively studied consecutive patients to determine whether septal scar contributes to implant failure.

Methods: Patients scheduled for bradycardia pacing or cardiac resynchronization therapy were prospectively enrolled. Recruited patients underwent preprocedural scar assessment by cardiac MRI with late gadolinium enhancement imaging. LBBAP was attempted using a lumenless lead (Medtronic 3830) via a transeptal approach.

Results: Thirty-five patients were recruited: 29 male, mean age 68 years, 10 ischemic, and 16 non-ischemic cardiomyopathy. Pacing indication was bradycardia in 26% and cardiac resynchronization in 74%. The lead was successfully deployed to the left ventricular septum in 30/35 (86%) and unsuccessful in the remaining 5/35 (14%). Septal late gadolinium enhancement was significantly less extensive in patients where left septal lead deployment was successful, compared those where it was unsuccessful (median 8%, IQR 2%-18% vs. median 54%, IQR 53%-57%, p < .001).

Conclusions: The presence of septal scar appears to make it more challenging to deploy a lead to the left ventricular septum via the transeptal route. Additional implant tools or alternative approaches may be required in patients with extensive septal scar.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pace.14804DOI Listing

Publication Analysis

Top Keywords

cardiac resynchronization
12
septal scar
8
left bundle
8
bundle branch
8
branch area
8
area pacing
8
bradycardia pacing
8
pacing cardiac
8
late gadolinium
8
gadolinium enhancement
8

Similar Publications

Leadless Pacing: Current Status and Ongoing Developments.

Micromachines (Basel)

January 2025

Section of Electrophysiology, Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, 1653 W. Congress, Chicago, IL 60612, USA.

Although significant strides have been made in cardiac pacing, the field is still evolving. While transvenous permanent pacing is highly effective in the management of bradyarrhythmias, it is not risk free and may result in significant morbidity and, rarely, mortality. Transvenous leads are often the weakest link in a pacing system.

View Article and Find Full Text PDF

Permanent Left Bundle Branch Area DF-4 Defibrillator Lead Implantation-Feasibility, Procedural Caveats, Safety, and Follow-Up.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiac Electrophysiology and Pacing, Arrhythmia Heart Failure Academy, The Madras Medical Mission, Chennai, Tamil Nadu, India.

Introduction: Permanent implantation of a DF-4 implantable cardiac defibrillator (ICD) lead in the left bundle branch area (LBBA-ICD) is the next paradigm in amalgamating cardiac resynchronization therapy (CRT) and defibrillation. We systematically investigated feasibility/success rate, procedural caveats, and complications associated with a permanent DF-4 LBBA ICD implant and pertinent data at short-term follow-up.

Methods: We prospectively attempted implantation of 7 Fr Durata (Abbott, Chicago, IL, USA) single coil DF-4 ICD lead at the LBBA using a fixed-curve non-deflectable CPS locator delivery sheath.

View Article and Find Full Text PDF

Objectives: Cardiac resynchronization therapy (CRT) is an intervention for heart failure patients with reduced ejection fraction who exhibit specific electrocardiographic indicators of electrical dyssynchrony. However, electrical dyssynchrony does not universally correspond to left ventricular mechanical dyssynchrony (LVMD). Gated single-photon emission computed tomography (SPECT) myocardial perfusion allows for the assessment of LVMD, yet its role in the CRT selection process remains debated.

View Article and Find Full Text PDF

More than 1 million permanent pacemakers are implanted worldwide each year, half of which are in patients with high-grade atrioventricular block. Pacemakers provide adequate frequency support in the initial stage, but traditional right ventricular (RV) pacing may lead to or aggravate left ventricular dysfunction and arrhythmia. Several potential risk factors for heart failure and arrhythmias after pacemaker surgery have been identified, but their occurrence remains difficult to predict clinically.

View Article and Find Full Text PDF

The integrative physiology of the left ventricle and systemic circulation is fundamental to our understanding of advanced heart failure and cardiogenic shock. In simplest terms, any increase in aortic stiffness increases the vascular afterload presented to the failing left ventricle. The net effect is increased myocardial oxygen demand and reduced coronary perfusion pressure, thereby further deteriorating contractile function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!