Staphylococcus aureus is a major foodborne bacterial pathogen. Early detection of S. aureus is crucial to prevent infections and ensure food quality. The iron-regulated surface determinant protein A (IsdA) of S. aureus is a unique surface protein necessary for sourcing vital iron from host cells for the survival and colonization of the bacteria. The function, structure, and location of the IsdA protein make it an important protein for biosensing applications relating to the pathogen. Here, we report an in-silico approach to develop and validate high-affinity binding aptamers for the IsdA protein detection using custom-designed in-silico tools and single-molecule Fluorescence Resonance Energy Transfer (smFRET) measurements. We utilized in-silico oligonucleotide screening methods and metadynamics-based methods to generate 10 aptamer candidates and characterized them based on the Dissociation Free Energy (DFE) of the IsdA-aptamer complexes. Three of the aptamer candidates were shortlisted for smFRET experimental analysis of binding properties. Limits of detection in the low picomolar range were observed for the aptamers, and the results correlated well with the DFE calculations, indicating the potential of the in-silico approach to support aptamer discovery. This study showcases a computational SELEX method in combination with single-molecule binding studies deciphering effective aptamers against S. aureus IsdA, protein. The established approach demonstrates the ability to expedite aptamer discovery that has the potential to cut costs and predict binding efficacy. The application can be extended to designing aptamers for various protein targets, enhancing molecular recognition, and facilitating the development of high-affinity aptamers for multiple uses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300076 | DOI Listing |
Nat Commun
December 2024
Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
Pathobionts have evolved many strategies to coexist with the host, but how immune evasion mechanisms contribute to the difficulty of developing vaccines against pathobionts is unclear. Meanwhile, Staphylococcus aureus (SA) has resisted human vaccine development to date. Here we show that prior SA exposure induces non-protective CD4 T cell imprints, leading to the blunting of protective IsdB vaccine responses.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA.
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice.
View Article and Find Full Text PDFAnal Bioanal Chem
August 2024
Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases.
View Article and Find Full Text PDFBiotechnol Prog
October 2024
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA.
Staphylococcus aureus (S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor in S.
View Article and Find Full Text PDFVet Res
September 2023
Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!