Scabies is a parasitic infestation with high global burden. Mass drug administrations (MDAs) are recommended for communities with a scabies prevalence of >10%. Quantitative analyses are needed to demonstrate the likely effectiveness of MDA recommendations. In this study, we developed an agent-based model of scabies transmission calibrated to demographic and epidemiological data from Monrovia. We used this model to compare the effectiveness of MDA scenarios for achieving scabies elimination and reducing scabies burden, as measured by time until recrudescence following delivery of an MDA and disability-adjusted-life-years (DALYs) averted. Our model showed that three rounds of MDA delivered at six-month intervals and reaching 80% of the population could reduce prevalence below 2% for three years following the final round, before recrudescence. When MDAs were followed by increased treatment uptake, prevalence was maintained below 2% indefinitely. Increasing the number of and coverage of MDA rounds increased the probability of achieving elimination and the number of DALYs averted. Our results suggest that acute reduction of scabies prevalence by MDA can support a transition to improved treatment access. This study demonstrates how modelling can be used to estimate the expected impact of MDAs by projecting future epidemiological dynamics and health gains under alternative scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548539 | PMC |
http://dx.doi.org/10.1017/S0950268823001310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!