Recent studies have shown that DNA methylation is an important epigenetic marker. Two prominent forms are methylation of the C5 position of cytosine and methylation of the C6 position of adenine. Given the vital significance of DNA methylation, investigating the mechanisms that influence protein binding remains a compelling pursuit. This study used molecular dynamics simulations to investigate the binding patterns of R2R3 protein and four differentially methylated DNAs. The alanine scanning combined with interaction entropy method was used to identify key residues that respond to different methylation patterns. The order of protein binding ability to DNA is as follows: unmethylated DNA > A11 methylation (5'-A6mAC-3') (6m2A system) > A10 methylation (5'-6mAAC-3') (6m1A system) > both A10 and A11 methylation (5'-6mA6mAC-3') (6mAA system) > C12 methylation (5'-AA5mC-3') (5mC system). All methylation systems lead to the sixth α helix (H6) (residues D105 to L116) moving away from the binding interface, and in the 5mC and 6m1A systems, the third α helix (H3) (residues G54 to L65) exhibits a similar trend. When the positively charged amino acids in H3 and H6 move away from the binding interface, their electrostatic and van der Waals interactions with the negatively charged DNA are weakened. Structural changes induced by methylation contributed to the destabilization of the hydrogen bond network near the original binding site, except for the 6m2A system. Moreover, there is a positive correlation between the number of methylated sites and the probability of distorting the DNA structure. Our study explores how different methylation patterns affect binding and structural adaptability, and have implications for drug discovery and understanding diseases related to abnormal methylation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02544fDOI Listing

Publication Analysis

Top Keywords

methylation
13
binding
8
dna methylation
8
methylation position
8
protein binding
8
methylation patterns
8
a11 methylation
8
6m2a system
8
system a10
8
helix residues
8

Similar Publications

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Retraction Note: Comment on, "Differential DNA methylation associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review".

Neurosurg Rev

January 2025

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

To mitigate the exhaustion of hydrocarbon fuels and the rise of pollutants, one can use biofuels in diesel engines for power generation. This study examines the possibility of enhancing the performance and reducing the pollutions of a compressed ignition engine using methyl ester made from cotton silk seed oil. This study aimed to assess the energy, energy efficiency, and emissions (3E) of the Kirloskar engine operating at 1800 rpm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!