Forest biodiversity is likely maintained by a complex suite of interacting drivers that vary in importance across both space and time. Contributing factors include disturbance, interannual variation in abiotic variables, and biotic neighborhood effects. To probe ongoing uncertainties and potential interactions, we investigated tree seedling performance in a temperate mid-Atlantic forest ecosystem. We planted seedlings of five native tree species in mapped study plots, half of which were subjected to disturbance, and then monitored seedling survival, height growth, and foliar condition. The final year of data collection encompassed a drought, enabling comparison between intervals varying in water availability. Seedling performance was analyzed as a function of canopy cover and biotic neighborhood (conspecific and heterospecific abundance), including interactions, with separate generalized linear mixed models fit for each interval. All species exhibited: (a) pronounced declines in height growth during the drought year, (b) detrimental effects of adult conspecifics, and (c) beneficial effects of canopy openness. However, despite these consistencies, there was considerable variation across species in terms of the relevant predictors for each response variable in each interval. Our results suggest that drought may strengthen or reveal conspecific inhibition in some instances while weakening it or obscuring it in others, and that some forms of conspecific inhibition may manifest only under particular canopy conditions (although given the inconsistency of our findings, we are not convinced that conspecific inhibition is critical for diversity maintenance in our study system). Overall, our work reveals a complex forest ecosystem that appears simultaneously and interactively governed by biotic neighborhood structure (e.g., conspecific and/or heterospecific abundance), local habitat conditions (e.g., canopy cover), and interannual variability (e.g., drought).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427772PMC
http://dx.doi.org/10.1002/ece3.10413DOI Listing

Publication Analysis

Top Keywords

biotic neighborhood
16
seedling performance
12
conspecific inhibition
12
tree seedling
8
forest ecosystem
8
height growth
8
canopy cover
8
heterospecific abundance
8
conspecific
5
effects
4

Similar Publications

Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.

View Article and Find Full Text PDF

Impact of Microtopography and Neighborhood Effects on Individual Survival Across Life History Stages.

Plants (Basel)

November 2024

Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.

Understanding drivers of plant community assembly and individual survival in forest ecosystems is crucial for effective conservation and management. While macro-scale factors influencing vegetation patterns are well documented, the combined impact of microtopographic variations and neighborhood effects at neighborhood scales, particularly in subtropical forests, requires further study. To contribute to this area of research, we established a 9.

View Article and Find Full Text PDF

Background And Aims: There is ongoing debate about whether offspring perform best next to phylogenetically distantly related adult neighbours (due to the scarcity of enemies and competitors) or next to closely related adults (due to the abundance of mutualists). Here we hypothesise that relatedness of adult neighbours affects which traits confer performance rather than performance itself.

Methods: We studied seed removal, seed germination and sapling growth in Sessile Oaks (Quercus petraea and hybrids), and how they depend on size, shape and other traits, under both closely and distantly related canopies, manipulating offspring-density, presence of insects, and fungi, and spatial proximity to oaks.

View Article and Find Full Text PDF

Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds.

View Article and Find Full Text PDF

Neighborhood Diversity Promotes Tree Growth in a Secondary Forest: The Interplay of Intraspecific Competition, Interspecific Competition, and Spatial Scale.

Plants (Basel)

July 2024

Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.

Understanding the biodiversity-productivity relationship (BPR) is crucial for biodiversity conservation and ecosystem management. While it is known that diversity enhances forest productivity, the underlying mechanisms at the local neighborhood level remain poorly understood. We established a 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!