Background: The drug resistance of chemotherapeutic agents leads to unsatisfactory survival rates for cervical cancer (CC) patients. We aimed to explore the effect of FOXP2 on the sensitivity of CC cells to cisplatin (DDP) and its mechanism in Changde, China in 2018.
Methods: A Total of 6 cervical cancer tissue samples including 3 patients with cisplatin sensitivity and 3 patients with cisplatin resistance, who received DDP-based treatment, were obtained from Changde First People's Hospital, Changde City during 2021, and FOXP2 level was detected by Western blot. The expression levels of FOXP2 and c-MET (hepatocyte growth factor receptor, c-MET) in cells were determined by q-PCR and Western blot analysis. The cell survival, apoptosis, and clone formation were analyzed by flow cytometry, MTT assay, or clone formation assay. Dual-luciferase reporter assays and Chromatin immunoprecipitation were applied to verify the regulation between FOXP2 and c-MET.
Results: FOXP2 was downregulated in cisplatin-resistant cervical cancer tissues and cells compared with control. FOXP2 overexpression in SiHa/DDP cells inhibited cell proliferation and promoted cell apoptosis, whereas down-regulation of FOXP2 in SiHa cells had the opposite result. FOXP2 enhanced chemosensitive to DDP in CC cells. FOXP2 is negatively correlated with c-MET expression level in SiHa and SiHa/DDP cells. Mechanistically, FOXP2 binds to the promoter region of c-MET to regulate its expression in CC cells negatively. Overexpression of c-MET can attenuate the enhancement of DDP-induced apoptosis caused by FOXP2 overexpression.
Conclusion: This is a novel study on the role of FOXP2 in promoting the DDP sensitivity of CC cells by inhibiting c-MET. The FOXP2/c-MET signaling axis uncovered in the present study may be a novel therapeutic target for the DDP therapy resistance of CC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10430408 | PMC |
http://dx.doi.org/10.18502/ijph.v52i7.13249 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFObstet Gynecol Sci
January 2025
Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
Human papillomavirus (HPV) is a key factor in gynecological oncology. This narrative review investigates the complex connection between HPV and various gynecological cancers. For a comprehensive exploration, we examined the association between persistent HPV infection and cervical cancer and its global prevalence.
View Article and Find Full Text PDFCancer Causes Control
January 2025
Department of Health Policy and Management, Winship Cancer Center, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30030, USA.
Purpose: The National Breast and Cervical Cancer Early Detection Program (NBCCEDP) provides access to timely breast and cervical cancer screening and diagnostic services to women who have low incomes and are uninsured or underinsured. Documenting the number of women eligible and the proportion of eligible women who receive NBCCEDP-funded services is important for identifying opportunities to increase screening and diagnostic services among those who would not otherwise have access.
Methods: Using the Census Bureau's Small Area Health Insurance Estimates data, we estimated the number of women who met the NBCCEDP eligibility criteria based on age, income, and insurance status.
Curr Mol Med
January 2025
Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!