Patterns in and predictors of stream and river macroinvertebrate genera and fish species richness across the conterminous USA.

Knowl Manag Aquat Ecosyst

United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA.

Published: July 2023

Both native and non-native taxa richness patterns are useful for evaluating areas of greatest conservation concern. To determine those patterns, we analyzed fish and macroinvertebrate taxa richness data obtained at 3475 sites collected by the USEPA's National Rivers and Streams Assessment. We also determined which natural and anthropogenic variables best explained patterns in regional richness. Macroinvertebrate and fish richness increased with the number of sites sampled per region. Therefore, we determined residual taxa richness from the deviation of observed richness from predicted richness given the number of sites per region. Regional richness markedly exceeded average site richness for both macroinvertebrates and fish. Predictors of macroinvertebrate-genus and fish-species residual-regional richness differed. Air temperature was an important predictor in both cases but was positive for fish and negative for macroinvertebrates. Both natural and land use variables were significant predictors of regional richness. This study is the first to determine mean site and regional richness of both fish and aquatic macroinvertebrates across the conterminous USA, and the key anthropogenic drivers of regional richness. Thus, it offers important insights into regional USA biodiversity hotspots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428169PMC
http://dx.doi.org/10.1051/kmae/2023014DOI Listing

Publication Analysis

Top Keywords

regional richness
20
richness
14
taxa richness
12
conterminous usa
8
number sites
8
fish
6
regional
6
patterns
4
patterns predictors
4
predictors stream
4

Similar Publications

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

Bauxite mining has been caused severe changes in the natural ecosystems of the Amazon, but the restoration of these areas is mandatory by federal law in Brazil. The recolonization of fauna is crucial to establishing the ecological functions of recovering forests, and the small nonflying mammals can stand out in this process. Assessing taxonomic and functional diversity parameters, we demonstrated that in the early stages of forest recovery post-bauxite mining, between 6 and 11 years, it is possible to restore approximately 45% of the richness of small non-flying mammal species from the original habitats, that in this case were altered Primary Forests.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Biotic and Abiotic Drivers of Ecosystem Temporal Stability in Herbaceous Wetlands in China.

Glob Chang Biol

January 2025

Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

Maintaining the stability of ecosystems is critical for supporting essential ecosystem services over time. However, our understanding of the contribution of the diverse biotic and abiotic factors to this stability in wetlands remains limited. Here, we combined data from a field vegetation survey of 725 herbaceous wetland sites in China with remote sensing information from the Enhanced Vegetation Index (EVI) from 2010 to 2020 to explore the contribution of biotic and abiotic factors to the temporal stability of primary productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!