A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting incident dementia in cerebral small vessel disease: comparison of machine learning and traditional statistical models. | LitMetric

AI Article Synopsis

  • Cerebral small vessel disease (SVD) is linked to 45% of dementia cases, but existing prediction models using traditional statistics are insufficient.
  • Researchers examined whether machine learning (ML) techniques could enhance dementia prediction in SVD compared to standard statistical methods by analyzing data from three different cohorts.
  • Findings revealed that while regularized regression performed slightly better, ML models did not significantly improve prediction accuracy, with baseline cognitive scores being the most relevant predictor for dementia risk.

Article Abstract

Background: Cerebral small vessel disease (SVD) contributes to 45% of dementia cases worldwide, yet we lack a reliable model for predicting dementia in SVD. Past attempts largely relied on traditional statistical approaches. Here, we investigated whether machine learning (ML) methods improved prediction of incident dementia in SVD from baseline SVD-related features over traditional statistical methods.

Methods: We included three cohorts with varying SVD severity (RUN DMC,  = 503; SCANS,  = 121; HARMONISATION,  = 265). Baseline demographics, vascular risk factors, cognitive scores, and magnetic resonance imaging (MRI) features of SVD were used for prediction. We conducted both survival analysis and classification analysis predicting 3-year dementia risk. For each analysis, several ML methods were evaluated against standard Cox or logistic regression. Finally, we compared the feature importance ranked by different models.

Results: We included 789 participants without missing data in the survival analysis, amongst whom 108 (13.7%) developed dementia during a median follow-up of 5.4 years. Excluding those censored before three years, we included 750 participants in the classification analysis, amongst whom 48 (6.4%) developed dementia by year 3. Comparing statistical and ML models, only regularised Cox/logistic regression outperformed their statistical counterparts overall, but not significantly so in survival analysis. Baseline cognition was highly predictive, and global cognition was the most important feature.

Conclusions: When using baseline SVD-related features to predict dementia in SVD, the ML survival or classification models we evaluated brought little improvement over traditional statistical approaches. The benefits of ML should be evaluated with caution, especially given limited sample size and features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428032PMC
http://dx.doi.org/10.1016/j.cccb.2023.100179DOI Listing

Publication Analysis

Top Keywords

traditional statistical
16
dementia svd
12
survival analysis
12
dementia
8
incident dementia
8
cerebral small
8
small vessel
8
vessel disease
8
machine learning
8
statistical models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!