Background: Myricitrin is a flavonol glycoside possessing beneficial effects on obesity, a rising global health issue that affects millions of people worldwide. However, the involving target and mechanism remain unclear.
Objective: In the present study, the anti-obesity targets and molecular mechanisms of Myricitrin, along with another flavanol Epigallocatechin gallate (EGCG), were explored through network pharmacology, bioinformatics, and molecular docking.
Methods: The potential targets for Myricitrin and EGCG were obtained from Pharmmaper, SwissTargetPrediction, TargetNet, SEA, Super-PRED, TCMSP, and STICH databases. Meanwhile, DEG targets were retrieved from GEO datasets, and obesity targets were collected from DrugBank, TTD, DisGeNet, OMIM, GeneCards, PharmGKB, and CTD databases. GO and KEGG pathway enrichment analyses were conducted through Metascape online tool. Protein-protein interaction (PPI) networks were also constructed for compound, DEG, and obesity targets to screen the core targets through MCODE analysis. The further screened-out key targets were finally verified through the compound-target-pathway-disease network, mRNA expression level, target-organ correlation, and molecular docking analyses.
Results: In total, 538 and 660 targets were identified for Myricitrin and EGCG, respectively, and 725 DEG targets and 1880 obesity targets were retrieved. GO and KEGG analysis revealed that Myricitrin and EGCG targets were enriched in the pathways correlating with obesity, cancer, diabetes, and cardiovascular disease. Furthermore, the intersection core targets for Myricitrin and EGCG function mainly through the regulation of responses to hormones and involving pathways in cancer. Above all, androgen receptor (AR), cyclin D1 (CCND1), early growth response protein 1 (EGR1), and estrogen receptor (ERS1) were identified as key targets in the compound-target-pathway-disease network for both Myricitrin and EGCG, with significant different mRNA expression between weight loss and control groups. Target-organ correlation analysis exhibited that AR and CCND1 showed high expression in adipocytes. Molecular docking also revealed good binding abilities between Myricitrin and EGCG, and all four receptor proteins.
Conclusion: The present research integrated network pharmacology and bioinformatics approach to reveal the key targets of Myricitrin and EGCG against obesity. The results provided novel insights into the molecular mechanism of Myricitrin and EGCG in obesity prevention and treatment and laid the foundations for the exploitation of flavonoid-containing herbal resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612829666230817145742 | DOI Listing |
Curr Pharm Des
September 2023
Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China.
Background: Myricitrin is a flavonol glycoside possessing beneficial effects on obesity, a rising global health issue that affects millions of people worldwide. However, the involving target and mechanism remain unclear.
Objective: In the present study, the anti-obesity targets and molecular mechanisms of Myricitrin, along with another flavanol Epigallocatechin gallate (EGCG), were explored through network pharmacology, bioinformatics, and molecular docking.
Adv Redox Res
December 2021
Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan.
SARS-CoV-2 main protease is a possible target for protection against viral infection. This study examined the inhibitory effect of food phytochemicals on the main protease of SARS-CoV-2 by determining a cleaved product after chromatographic separation. First, 37 phytochemicals, including glycosides and metabolites, were screened at 20 µM; epigallocatechin gallate, myricetin, theaflavin, herbacetin, piceatannol, myricitrin, and isothiocyanates inhibited the enzyme in varying degrees.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2022
Department of Food Science and Technology, IPB Dramaga Campus, IPB University, Bogor, Indonesia.
Ethnopharmacological Relevance: Syzygium polyanthum (Wight) Walp leaves are traditionally used to cure diabetes in many regions of Indonesia. Traditional use involves boiling the leaves until the water is reduced to half volume, and then the decoction is taken 1-2 times daily. Despite several studies reporting the antidiabetic activity of this plant, bioactive compounds have not been well identified.
View Article and Find Full Text PDFACS Omega
July 2020
Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China.
The present study is to investigate the polyphenolic composition and antidiabetic effect of white-fleshed Chinese bayberry cultivar "Shui Jing". By liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), 38 polyphenols were identified in the Shui Jing fruit extract (SJE), where proanthocyanidins (PAs), including epigallocatechin gallate (EGCG), as well as flavonols, including myricitrin and quercetrin, were the predominant ingredients. After a 5-week experiment, the SJE (200 mg/kg bodyweight) significantly reduced fasting blood glucose, elevated glucose tolerance, and insulin sensitivity in diabetic KK-A mice.
View Article and Find Full Text PDFAntioxidants (Basel)
March 2020
Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland.
Skin is constantly exposed to harmful environmental factors, causing photo-oxidative stress in cells and leading to the development of health and aesthetic problems. Multifunctional ingredients of everyday skincare products, possessing antioxidant, UV-protecting, anti-hyperpigmentation, and skin cancer-preventing properties are in high demand. Due to the high content of polyphenolic compounds × L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!