Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: We developed Data Base similarity (DBsimilarity), a user-friendly tool designed to organize structure databases into similarity networks, with the goal of facilitating the visualization of information primarily for natural product chemists who may not have coding experience.
Method: DBsimilarity, written in Jupyter Notebooks, converts Structure Data File (SDF) files into Comma-Separated Values (CSV) files, adds chemoinformatics data, constructs an MZMine custom database file and an NMRfilter candidate list of compounds for rapid dereplication of MS and 2D NMR data, calculates similarities between compounds, and constructs CSV files formatted into similarity networks for Cytoscape.
Results: The Lotus database was used as a source for Ginkgo biloba compounds, and DBsimilarity was used to create similarity networks including NPClassifier classification to indicate biosynthesis pathways. Subsequently, a database of validated antibiotics from natural products was combined with the G. biloba compounds to identify promising compounds. The presence of 11 compounds in both datasets points to possible antibiotic properties of G. biloba, and 122 compounds similar to these known antibiotics were highlighted. Next, DBsimilarity was used to filter the NPAtlas database (selecting only those with MIBiG reference) to identify potential antibacterial compounds using the ChEMBL database as a reference. It was possible to promptly identify five compounds found in both databases and 167 others worthy of further investigation.
Conclusion: Chemical and biological properties are determined by molecular structures. DBsimilarity enables the creation of interactive similarity networks using Cytoscape. It is also in line with a recent review that highlights poor biological plausibility and unrealistic chromatographic behaviors as significant sources of errors in compound identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pca.3277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!