Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session7ec60mfolrle04qigqsrd458c0g51uu3): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435453 | PMC |
http://dx.doi.org/10.1038/s41598-023-40179-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!