The neuromodulation effect of low-intensity focused ultrasound (LIFU) is highly target-specific. Unintended off-target neuronal excitation can be elicited when the beam focusing accuracy and resolution are limited, whereas the resulted side effect has not been evaluated quantitatively. There is also a lack of methods addressing the minimization of such side effects. Therefore, this work introduces a computational model of unintended neuronal excitation during LIFU neuromodulation, which evaluates the off-target activation area (OTAA) by integrating an ultrasound field model with the neuronal spiking model. In addition, a phased array beam focusing scheme called constrained optimal resolution beamforming (CORB) is proposed to minimize the off-target neuronal excitation area while ensuring effective stimulation in the target brain region. A lower bound of the OTAA is analytically approximated in a simplified homogeneous medium, which could guide the selection of transducer parameters such as aperture size and operating frequency. Simulations in a human head model using three transducer setups show that CORB markedly reduces the OTAA compared with two benchmark beam focusing methods. The high neuromodulation resolution demonstrates the capability of LIFU to effectively limit the side effects during neuromodulation, allowing future clinical applications such as treatment of neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435497PMC
http://dx.doi.org/10.1038/s41598-023-40522-wDOI Listing

Publication Analysis

Top Keywords

neuronal excitation
16
beam focusing
12
unintended neuronal
8
excitation lifu
8
off-target neuronal
8
side effects
8
neuronal
5
computational modeling
4
modeling minimization
4
minimization unintended
4

Similar Publications

Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.

View Article and Find Full Text PDF

Intranasal delivery of metformin using metal-organic framework (MOF)-74-Mg nanocarriers.

Adv Compos Hybrid Mater

January 2025

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA.

Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal-organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD.

View Article and Find Full Text PDF

Genetic features and pharmacological rescue of novel Kv7.2 variants in patients with epilepsy.

J Med Genet

January 2025

Heilongjiang Provincial Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China

Background: Increasing evidence indicates a robust correlation between epilepsy and variants of the Kv7.2 () channel, which is critically involved in directing M-currents and regulating neuronal excitability within the nervous system. With the advancement of next-generation sequencing, the identification of variants has surged.

View Article and Find Full Text PDF

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!