Synaptic adhesion molecules (SAMs) shape the structural and functional properties of synapses and thereby control the information processing power of neural circuits. SAMs are broadly expressed in the brain, suggesting that they may instruct synapse formation and specification via a combinatorial logic. Here, we generate sextuple conditional knockout mice targeting all members of the two major families of presynaptic SAMs, Neurexins and leukocyte common antigen-related-type receptor phospho-tyrosine phosphatases (LAR-PTPRs), which together account for the majority of known trans-synaptic complexes. Using synapses formed by cerebellar Purkinje cells onto deep cerebellar nuclei as a model system, we confirm that Neurexins and LAR-PTPRs themselves are not essential for synapse assembly. The combinatorial deletion of both neurexins and LAR-PTPRs, however, decreases Purkinje-cell synapses on deep cerebellar nuclei, the major output pathway of cerebellar circuits. Consistent with this finding, combined but not separate deletions of neurexins and LAR-PTPRs impair motor behaviors. Thus, Neurexins and LAR-PTPRs are together required for the assembly of a functional cerebellar circuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435579PMC
http://dx.doi.org/10.1038/s41467-023-40526-0DOI Listing

Publication Analysis

Top Keywords

neurexins lar-ptprs
16
cerebellar circuit
8
deep cerebellar
8
cerebellar nuclei
8
neurexins
6
cerebellar
6
lar-ptprs
5
combinatorial expression
4
expression neurexins
4
neurexins lar-type
4

Similar Publications

Synaptic adhesion molecules (SAMs) shape the structural and functional properties of synapses and thereby control the information processing power of neural circuits. SAMs are broadly expressed in the brain, suggesting that they may instruct synapse formation and specification via a combinatorial logic. Here, we generate sextuple conditional knockout mice targeting all members of the two major families of presynaptic SAMs, Neurexins and leukocyte common antigen-related-type receptor phospho-tyrosine phosphatases (LAR-PTPRs), which together account for the majority of known trans-synaptic complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!