Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by autoantibody production, joint inflammation and bone destruction. Nearly 1/3 of RA patients with the active disease also exhibit a normal range of ESR and CRP. Here we assessed the performance and clinical significance of soluble CD24 (sCD24) as a biomarker of disease activity in RA. A total of 269 RA patients, 59 primary Sjogren's syndrome (SS) patients, 81 systematic lupus erythematosus (SLE) patients, 76 osteoarthritis (OA) patients and 97 healthy individuals (HC) were included in this study. Soluble CD24 in sera were detected by ELISA. Therefore, the concentration of sCD24 was analyzed in RA patients with different disease activity statuses. The sCD24 was significantly increased in RA (2970 pg/mL), compared to other rheumatic diseases (380-520 pg/mL) and healthy individuals (320 pg/mL). Moreover, sCD24 was elevated in 66.67% of early RA and 61.11% of seronegative RA patients. In addition, sCD24 was significantly correlated with the disease duration and inflammatory indicators. The sCD24 could be an inflammatory biomarker in RA patients, especially in early and seronegative patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438858PMC
http://dx.doi.org/10.1080/07853890.2023.2246370DOI Listing

Publication Analysis

Top Keywords

soluble cd24
12
patients
9
inflammatory biomarker
8
early seronegative
8
rheumatoid arthritis
8
disease activity
8
healthy individuals
8
seronegative patients
8
scd24
6
disease
5

Similar Publications

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by autoantibody production, joint inflammation and bone destruction. Nearly 1/3 of RA patients with the active disease also exhibit a normal range of ESR and CRP. Here we assessed the performance and clinical significance of soluble CD24 (sCD24) as a biomarker of disease activity in RA.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) elicit potent cell cycle arrest in EGFR-mutant non-small-cell lung cancer (NSCLC) cells. However, little is known about the mechanisms through which these drugs alter the tumor phenotype that contributes to the immune escape of EGFR-mutant cells. Using EGFR-mutant NSCLC cell lines and tissue samples from patients, we investigated the changes in immune checkpoints expressed in tumor cells following EGFR inhibition.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is known as the primary malignant and most devastating form of tumor found in the central nervous system of the adult population. The active pharmaceutical component in current chemotherapy regimens is mostly hydrophobic and poorly water-soluble, which hampers clinical implications. Nanodrug formulations using nanocarriers loaded with such drugs assisted in water dispersibility, improved cellular permeability, and drug efficacy at a low dose, thus adding to the overall practical value.

View Article and Find Full Text PDF

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway.

View Article and Find Full Text PDF

Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!