Could fumarate hydratase germline mutation in cutaneous leiomyomas predict Hereditary Leiomyoma and Renal Cell Cancer (HLRCC)?

Asian J Surg

Department of Dermatology, The Second Hospital Affiliated to Guangdong Medical University, No. 12 Xiashan District Minyou Road, Zhanjiang, 524000, Guangdong Province, China. Electronic address:

Published: December 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.asjsur.2023.07.144DOI Listing

Publication Analysis

Top Keywords

fumarate hydratase
4
hydratase germline
4
germline mutation
4
mutation cutaneous
4
cutaneous leiomyomas
4
leiomyomas predict
4
predict hereditary
4
hereditary leiomyoma
4
leiomyoma renal
4
renal cell
4

Similar Publications

The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.

View Article and Find Full Text PDF

Fumarate hydratase tumor predisposition syndrome (FHTPS) is caused by germline fumarate hydratase (FH) pathogenic variants (PVs). Most women with FHTPS develop FH-deficient (FHD) uterine leiomyomas (ULs), which arise 10 to 15 years earlier than aggressive FHD-renal cell carcinoma. We evaluate a previously proposed FHTPS screening strategy for women with ULs.

View Article and Find Full Text PDF

Metastasis causes most cancer deaths and reflects transitions from primary tumor escape to seeding and growth at metastatic sites. Epithelial-to-mesenchymal transition (EMT) is important early in metastasis to enable cancer cells to detach from neighboring cells, become migratory, and escape the primary tumor. While different phases of metastasis expose cells to variable nutrient environments and demands, the metabolic requirements and plasticity of each step are uncertain.

View Article and Find Full Text PDF

Aberrant fumarate metabolism links interferon release in diffuse systemic sclerosis.

J Dermatol Sci

January 2025

Biosciences Department, Durham University, Durham, United Kingdom. Electronic address:

Background: Systemic Sclerosis (SSc) is an idiopathic rheumatic inflammatory disease that is characterised by inflammation and skin fibrosis. Type I interferon is significantly elevated in the disease.

Objective: The objective of this study is to determine the role of the TCA cycle metabolite fumarate in SSc.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!