Is there a way improve our ability to understand the minds of others? Towards addressing this question, here, we conducted a single-arm, proof-of-concept study to evaluate whether real-time fMRI neurofeedback (rtfMRI-NF) from the temporo-parietal junction (TPJ) leads to volitional control of the neural network subserving theory of mind (ToM; the process by which we attribute and reason about the mental states of others). As additional aims, we evaluated the strategies used to self-regulate the network and whether volitional control of the ToM network was moderated by participant characteristics and associated with improved performance on behavioral measures. Sixteen participants underwent fMRI while completing a task designed to individually-localize the TPJ, and then three separate rtfMRI-NF scans during which they completed multiple runs of a training task while receiving intermittent, activation-based feedback from the TPJ, and one run of a transfer task in which no neurofeedback was provided. Region-of-interest analyses demonstrated volitional control in most regions during the training tasks and during the transfer task, although the effects were smaller in magnitude and not observed in one of the neurofeedback targets for the transfer task. Text analysis demonstrated that volitional control was most strongly associated with thinking about prior social experiences when up-regulating the neural signal. Analysis of behavioral performance and brain-behavior associations largely did not reveal behavior changes except for a positive association between volitional control in RTPJ and changes in performance on one ToM task. Exploratory analysis suggested neurofeedback-related learning occurred, although some degree of volitional control appeared to be conferred with the initial self-regulation strategy provided to participants (i.e., without the neurofeedback signal). Critical study limitations include the lack of a control group and pre-rtfMRI transfer scan, which prevents a more direct assessment of neurofeedback-induced volitional control, and a small sample size, which may have led to an overestimate and/or unreliable estimate of study effects. Nonetheless, together, this study demonstrates the feasibility of training volitional control of a social cognitive brain network, which may have important clinical applications. Given the study's limitations, findings from this study should be replicated with more robust experimental designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2023.120334 | DOI Listing |
J Neurophysiol
January 2025
Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
Many individuals with incomplete spinal cord injury (SCI) exhibit reduced volitional control of trunk muscles, such as impaired voluntary contractions of the erector spinae (ES), due to damage to the neural pathways regulating sensorimotor function. Studies using conventional bipolar electromyography (EMG) showed alterations in the overall, or global, activation of the trunk muscles in people with SCI. However, how activation varied across specific regions within the ES, referred to as regional activation, remains unknown.
View Article and Find Full Text PDFReports an error in "One thought too few: An adaptive rationale for punishing negligence" by Arunima Sarin and Fiery Cushman (, 2024[Apr], Vol 131[3], 812-824). In the original article, the copyright attribution was incorrectly listed, and the Creative Commons CC BY license disclaimer was incorrectly omitted from the author note. The correct copyright is "© 2024 The Author(s)," and the omitted disclaimer is present as: Open Access funding provided by University College London: This work is licensed under a Creative Commons Attribution 4.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.
View Article and Find Full Text PDFNeurourol Urodyn
December 2024
Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Introduction: Detrusor contractions can be classified as either volitional or involuntary. The latter are a hallmark of urge urinary incontinence. Understanding differences in neuroactivation associated with both types of contractions can help elucidate pathophysiology and therapeutic targets.
View Article and Find Full Text PDFAging Clin Exp Res
December 2024
Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Rodovia Celso Garcia, km 380, Londrina, 86057-970, Brazil.
Introduction: Preparation methods are often used to improve performance (e.g., number of repetitions) within the resistance training session.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!