Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The discovery of disease-modifying therapies for Parkinson's Disease (PD) represents a critical need in neurodegenerative medicine. Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) are risk factors for the development of PD, and some of these mutations have been linked to increased LRRK2 kinase activity and neuronal toxicity in cellular and animal models. Furthermore, LRRK2 function as a scaffolding protein in several pathways has been implicated as a plausible mechanism underlying neurodegeneration caused by LRRK2 mutations. Given that both the kinase activity and scaffolding function of LRRK2 have been linked to neurodegeneration, we developed proteolysis-targeting chimeras (PROTACs) targeting LRRK2. The degrader molecule JH-XII-03-02 (6) displayed high potency and remarkable selectivity for LRKK2 when assessed in a of 468 panel kinases and serves the dual purpose of eliminating both the kinase activity as well as the scaffolding function of LRRK2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2023.129449 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!