Immunoglobulin G (IgG) is the most common type of antibody found in blood and extracellular fluids and plays an essential role in our immune response. However, studies of the dynamics and reaction kinetics of IgG-antigen binding under physiological crowding conditions are scarce. Herein, we develop a coarse-grained model of IgG consisting of only six beads that we find minimal for a coarse representation of IgG's shape and a decent reproduction of its flexibility and diffusion properties measured experimentally. Using this model in Brownian dynamics simulations, we find that macromolecular crowding affects only slightly the IgG's flexibility, as described by the distribution of angles between the IgG's arms and stem. Our simulations indicate that, contrary to expectations, crowders slow down the translational diffusion of an IgG less strongly than they do for a smaller Ficoll 70, which we relate to the IgG's conformational size changes induced by crowding. We also find that crowders affect the binding kinetics by decreasing the rate of the first binding step and enhancing the second binding step.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476189 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.3c02383 | DOI Listing |
Biochim Biophys Acta Biomembr
January 2025
Land and Food Systems, University of British Columbia, Vancouver, Canada; Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada. Electronic address:
The Solanum tuberosum (common potato) plant specific insert (StPSI) is an antimicrobial protein domain that exhibits membrane-disrupting and membrane-fusing activity upon dimerization at acidic pH, activity proposed to involve electrostatic attraction and membrane anchoring mediated by specific positively-charged and conserved tryptophan residues, respectively. This study is the first to employ an in silico mutagenesis approach to clarify the structure-function relationship of a plant specific insert (PSI), where ten rationally-mutated StPSI variants were investigated using all-atom and coarse-grained molecular dynamics. The tryptophan (W) residue at position 18 (W18) of wild-type StPSI was predicted to confer structural flexibility to the dimer and mediate a partial separation of the assembled monomers upon bilayer contact, while residues including W77 and the lysine (K) residue at position 83 (K83) were predicted to stabilize secondary structure and influence association with the model membrane.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
One of the key advantages of using a hydrogel is its superb control over elasticity obtained through variations of constituent polymer and water. The underlying molecular nature of a hydrogel is a fundamental origin of hydrogel mechanics. In this article, we report a Polyacrylamide (PAAm)-based hydrogel model using the MARTINI coarse-grained (CG) force field.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!