Integrating single-cell imaging and RNA sequencing datasets links differentiation and morphogenetic dynamics of human pancreatic endocrine progenitors.

Dev Cell

The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen 2200, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Systems Biology Dresden Dresden 01307, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany. Electronic address:

Published: November 2023

Basic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet information on their dynamics is limited, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. By monitoring both NEUROG3 gene expression and protein in single cells using a knockin dual reporter in 2D and 3D models of human pancreas development, we show an approximately 2-fold slower expression of human NEUROG3 than that of the mouse. We observe heterogeneous peak levels of NEUROG3 expression and reveal through long-term live imaging that both low and high NEUROG3 peak levels can trigger differentiation into hormone-expressing cells. Based on fluorescence intensity, we statistically integrate single-cell transcriptome with dynamic behaviors of live cells and propose a data-mapping methodology applicable to other contexts. Using this methodology, we identify a role for KLK12 in motility at the onset of NEUROG3 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2023.07.019DOI Listing

Publication Analysis

Top Keywords

pancreatic endocrine
8
peak levels
8
neurog3 expression
8
neurog3
6
integrating single-cell
4
single-cell imaging
4
imaging rna
4
rna sequencing
4
sequencing datasets
4
datasets links
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!