Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457150 | PMC |
http://dx.doi.org/10.1093/gbe/evad153 | DOI Listing |
Sci Data
January 2025
Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
This study presents the first chromosome-level genome assembly of the Korean long-tailed chicken (KLC), a unique breed of Gallus gallus known as Ginkkoridak. Our assembly achieved a super contig N50 of 5.7 Mbp and a scaffold N50 exceeding 90 Mb, with a genome completeness of 96.
View Article and Find Full Text PDFSci Data
January 2025
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Mecoptera is a small relict order of insects within the Holometabola. Panorpidae is the most speciose family in Mecoptera. They are also known as scorpion flies due to the enlarged and upward recurved male genital bulb.
View Article and Find Full Text PDFSci Data
January 2025
Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
The flat-headed loach (Oreonectes platycephalus) is a small fish inhabiting headwaters of hillstreams of southern China. Its local populations are characterized by low genetic diversity and exceptionally high differentiation, making it an ideal model for studying small population isolates' persistence and adaptive potential. However, the lack of Oreonectes reference genomes limits endeavours toward these ambitions.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002).
View Article and Find Full Text PDFSci Data
December 2024
State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
Wild relatives of wheat are valuable sources for enhancing the genetic diversity of common wheat. Aegilops comosa, an annual diploid species with an MM genome constitution, possesses numerous agronomically valuable traits that can be exploited for wheat improvement. In this study, we report a chromosome-level genome assembly of Ae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!