In multiaperture ultrasound, several ultrasound probes with different insonification angles are combined to increase the field of view and angular coverage of image structures. A full reconstruction incorporating all possible combinations of transmitting and receiving probes has been shown to improve resolution, contrast, and angular coverage beyond what can be achieved by the registration of single images from different probes. A major challenge in multiaperture imaging is the correct determination of relative probe locations. A registration based on the content of images from different probes is challenging due to the decorrelation of image structures and speckle with increasing angle between the probes. We propose a probe localization method for plane-wave ultrasound that uses solely the receive dataset of a nontransmitting probe. The localization is performed by signal tracking in the Radon domain. To demonstrate that the method does not rely on common structures in the individual images, we show that a satisfying localization can be performed in pure speckle for angles, where the speckle patterns have completely decorrelated. The method shows potential for real-time probe localization in free-hand multiprobe ultrasound imaging or for flexible and wearable multiarray combination of multiple capacitive micromachined (CMUT)-based systems in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2023.3306033DOI Listing

Publication Analysis

Top Keywords

probe localization
16
multiaperture ultrasound
8
radon domain
8
angular coverage
8
image structures
8
images probes
8
localization performed
8
localization
5
ultrasound
5
probes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!