1. Deguelin (DGN), a retinoid isolated from many plants, exhibits a potent anticancer activity against a wide spectrum of tumour cells. There is a dearth of evidence, however, regarding the toxicity of DGN to red blood cells (RBCs). This is relevant given the prevalent chemotherapy-associated anaemia observed in cancer patients.2. RBCs were exposed to 1-100 μM of DGN for 24 h at 37 °C. Haemolysis and related markers were photometrically measured while flow cytometry was employed to detect phosphatidylserine exposure through Annexin-V-FITC binding and light scatter properties. Additionally, cytosolic Ca and reactive oxygen species were quantified using Fluo4/AM and HDCFDA, respectively. DGN was also tested against specific signalling inhibitors in addition to vitamin C and ATP.3. DGN caused a significant increase in Annexin-V-positive cells which was accompanied by cell shrinkage without Ca elevation or oxidative stress. DGN also elicited dose-responsive haemolysis which was ameliorated by preventing KCl efflux and in the presence of sucrose, D4476, and ATP. In whole blood, DGN significantly reduced the reticulocyte count and increased platelet distribution width and large cell count.4. DGN triggers premature RBC eryptosis and haemolysis through casein kinase 1α and ATP depletion, and exhibits a specific toxicity towards reticulocytes and platelets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00498254.2023.2248492 | DOI Listing |
Genes (Basel)
January 2025
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.
View Article and Find Full Text PDFCancer Res
January 2025
Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. Here, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA.
View Article and Find Full Text PDFbioRxiv
January 2025
Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
is a growing health concern as the leading causal agent of systemic candidiasis, a life-threatening fungal infection with a mortality rate of ~40% despite best available therapy. Yck2, a fungal casein kinase 1 (CK1) family member, is the cellular target of inhibitors YK-I-02 (YK) and MN-I-157 (MN). Here, multiplexed inhibitor beads paired with mass spectrometry (MIB/MS) employing ATP-competitive kinase inhibitors were used to define the selectivity of these Yck2 inhibitors across the global proteome.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of General Surgery, Guangzhou Red Cross Hospital/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, China.
The aberrant upregulation of Yes-associated protein 1 (YAP1) in a variety of solid cancers contributes to tumor progression and poor clinical outcomes, rendering it an appealing therapeutic target. However, effective therapies to directly target YAP1 remain challenging. In this study, we perform a high-throughput screening and identify Casein kinase II (CK2) as an uncharacterized upstream regulator of YAP1 turnover in cancer cells of ovarian cancer and several other cancer types.
View Article and Find Full Text PDFHum Pathol
January 2025
Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland.
Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!