Importance: The 3-dimensional (3-D) structural phenotype of glaucoma as a function of severity was thoroughly described and analyzed, enhancing understanding of its intricate pathology beyond current clinical knowledge.
Objective: To describe the 3-D structural differences in both connective and neural tissues of the optic nerve head (ONH) between different glaucoma stages using traditional and artificial intelligence-driven approaches.
Design, Setting, And Participants: This cross-sectional, clinic-based study recruited 541 Chinese individuals receiving standard clinical care at Singapore National Eye Centre, Singapore, and 112 White participants of a prospective observational study at Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania. The study was conducted from May 2022 to January 2023. All participants had their ONH imaged using spectral-domain optical coherence tomography and had their visual field assessed by standard automated perimetry.
Main Outcomes And Measures: (1) Clinician-defined 3-D structural parameters of the ONH and (2) 3-D structural landmarks identified by geometric deep learning that differentiated ONHs among 4 groups: no glaucoma, mild glaucoma (mean deviation [MD], ≥-6.00 dB), moderate glaucoma (MD, -6.01 to -12.00 dB), and advanced glaucoma (MD, <-12.00 dB).
Results: Study participants included 213 individuals without glaucoma (mean age, 63.4 years; 95% CI, 62.5-64.3 years; 126 females [59.2%]; 213 Chinese [100%] and 0 White individuals), 204 with mild glaucoma (mean age, 66.9 years; 95% CI, 66.0-67.8 years; 91 females [44.6%]; 178 Chinese [87.3%] and 26 White [12.7%] individuals), 118 with moderate glaucoma (mean age, 68.1 years; 95% CI, 66.8-69.4 years; 49 females [41.5%]; 97 Chinese [82.2%] and 21 White [17.8%] individuals), and 118 with advanced glaucoma (mean age, 68.5 years; 95% CI, 67.1-69.9 years; 43 females [36.4%]; 53 Chinese [44.9%] and 65 White [55.1%] individuals). The majority of ONH structural differences occurred in the early glaucoma stage, followed by a plateau effect in the later stages. Using a deep neural network, 3-D ONH structural differences were found to be present in both neural and connective tissues. Specifically, a mean of 57.4% (95% CI, 54.9%-59.9%, for no to mild glaucoma), 38.7% (95% CI, 36.9%-40.5%, for mild to moderate glaucoma), and 53.1 (95% CI, 50.8%-55.4%, for moderate to advanced glaucoma) of ONH landmarks that showed major structural differences were located in neural tissues with the remaining located in connective tissues.
Conclusions And Relevance: This study uncovered complex 3-D structural differences of the ONH in both neural and connective tissues as a function of glaucoma severity. Future longitudinal studies should seek to establish a connection between specific 3-D ONH structural changes and fast visual field deterioration and aim to improve the early detection of patients with rapid visual field loss in routine clinical care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436184 | PMC |
http://dx.doi.org/10.1001/jamaophthalmol.2023.3315 | DOI Listing |
Micromachines (Basel)
December 2024
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
With the emergence of the Internet of Things (IoT), the demand on the wireless power supply to consumer electronics simultaneously requires much more location freedom, ease of use, and performance with wireless communications. In this paper, an unenclosed quasi-static cavity resonator (QSCR) constructed with metallic strips and the design method are proposed and theoretically analyzed. This unenclosed QSCR has a simple structure, which benefits the wireless charging for portable/wearable electronics and smart appliances in the office and home environment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. Electronic address:
Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.
View Article and Find Full Text PDFBBA Adv
December 2024
Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India.
Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
A class of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives were synthesized under environmentally friendly conditions using water as the solvent. The 3-D structures of some synthesized compounds were determined by X-ray diffraction. Since naturally occurring isoquinoline alkaloids have significant antiviral activities against a wide range of viruses, including coronaviruses, the synthesized compounds were assayed for their inhibitory activities against SARS-CoV-2.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
Despite the many advantages for industrial mass production, vacuum-deposited organic solar cells (OSCs) suffer from low efficiency, primarily due to the limited molecular library of small-molecule donor and acceptor materials, which remains a significant challenge. Herein, two donor-acceptor-acceptor (D-A-A)-configured small-molecule donors, named TTBTDC and TTBTDC-F were synthesized, using 8H-thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]pyrrole (TTP) as a new fused-ring donor unit. Benefiting from the strong electron-donating ability of the TTP moiety and the adoption of the D-A-A molecular configuration, these molecules exhibited strong visible and near-infrared absorption as well as deep-lying highest occupied molecular orbital (HOMO) energy levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!