Colorimetric assays rely on detecting colour changes to measure the concentration of target molecules. Paper substrates are commonly used for the detection of biomarkers due to their availability, porous structure, and capillarity. However, the morphological and mechanical properties of paper, such as fibre diameter, pore size, and tensile strength, cannot be easily tuned to meet the specific requirements of colorimetric sensors, including liquid capacity and reagent immobilisation. As an alternative to paper materials, biodegradable polymeric membranes made of electrospun polycaprolactone (PCL) fibres can provide various tunable properties related to fibre diameter and pore size.We aimed to obtain a glucose sensor substrate for colorimetric sensing using electrospinning with PCL. A feeding solution was created by mixing PCL/chloroform and 3,3',5',5'-tetramethylbenzidine (TMB)/ethanol solutions. This solution was electrospun to fabricate a porous membrane composed of microfibres consist of PCL and TMB. The central area of the membrane was made hydrophilic through air plasma treatment, and it was subsequently functionalized with a solution containing glucose oxidase, horseradish peroxidase, and trehalose.The sensing areas were evaluated by measuring colour changes in glucose solutions of varying concentrations. The oxidation reactions of glucose and TMB in sensor substrates were recorded and analysed to establish the correlation between different glucose concentrations and colour changes. For comparison, conventional paper substrates prepared with same parameters were evaluated alongside the electrospun PCL substrates. As a result, better immobilization of reagents and higher sensitivity of glucose were achieved with PCL substrates, indicating their potential usage as a new sensing substrate for bioassays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435419PMC
http://dx.doi.org/10.1007/s10544-023-00673-zDOI Listing

Publication Analysis

Top Keywords

colour changes
12
electrospun polycaprolactone
8
substrate colorimetric
8
paper substrates
8
fibre diameter
8
diameter pore
8
pcl substrates
8
glucose
6
substrates
5
pcl
5

Similar Publications

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions.

Plants (Basel)

January 2025

Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.

Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.

View Article and Find Full Text PDF

Integrative Omics Analysis Reveals Mechanisms of Anthocyanin Biosynthesis in Djulis Spikes.

Plants (Basel)

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.

View Article and Find Full Text PDF

Metabolite Profiling and Association Analysis of Leaf Tipburn in Heat-Tolerant Bunching Onion Varieties.

Plants (Basel)

January 2025

Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.

The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!