Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The bottleneck in the rapid development of tin-based perovskite solar cells (TPSCs) is the inherent chemical instability. Although this is being addressed continuously, the device performance has not improved further due to the use of PEDOT:PSS as the hole-transport material (HTM), which has poor long-term stability. Herein we have applied commercial ITO nanoparticles over ITO glass substrates and altered the surface chemistry of the ITO electrode via a simple two-step thermal annealing, followed by a UV-ozone treatment. These surface-modified ITO electrodes display promising interfacial characteristics, such as a suitable band alignment owing to significantly reduced surface carbon contamination, increased In-O bonding, and reduced oxygen vacancies, that enabled fabrication of an HTM-free TPSC device according to a two-step method. The fabricated device possessed an outstanding power conversion efficiency (PCE) of 9.7%, along with a superior long-term stability by retaining over 90% of the initial PCE upon shelf storage in a glovebox for a period of over 10000 h. The application of ITO nanoparticles led to effective interfacial passivation, whose impacts on the long-term durability were assessed using electrochemical impedance spectroscopy, time-resolved photoluminescence decay profiles, and femtosecond transient absorption spectroscopy techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!