Damaraland mole-rats (Fukomys damarensis) are a hypoxia-tolerant fossorial species that exhibit a robust hypoxic metabolic response (HMR) and blunted hypoxic ventilatory response (HVR). Whereas the HVR of most adult mammals is mediated by increased excitatory glutamatergic signalling, naked mole-rats, which are closely related to Damaraland mole-rats, do not utilize this pathway. Given their phylogenetic relationship and similar lifestyles, we hypothesized that the signalling mechanisms underlying physiological responses to acute hypoxia in Damaraland mole-rats are like those of naked mole-rats. To test this, we used pharmacological antagonists of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs), combined with plethysmography, respirometry and thermal RFID chips, to non-invasively evaluate the role of excitatory AMPAR and NMDAR signalling in mediating ventilatory, metabolic and thermoregulatory responses, respectively, to 1 h of 5 or 7% O2. We found that AMPAR or NMDAR antagonism have minimal impacts on the HMR or hypoxia-mediated changes in thermoregulation. Conversely, the 'blunted' HVR of Damaraland mole-rats is reduced by either AMPAR or NMDAR antagonism such that the onset of the HVR occurs in less severe hypoxia. In more severe hypoxia, antagonists have no impact, suggesting that these receptors are already inhibited. Together, these findings indicate that the glutamatergic drive to breathe decreases in Damaraland mole-rats exposed to severe hypoxia. These findings differ from other adult mammals, in which the glutamatergic drive to breathe increases with hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565110PMC
http://dx.doi.org/10.1242/jeb.246185DOI Listing

Publication Analysis

Top Keywords

damaraland mole-rats
24
glutamatergic drive
12
drive breathe
12
ampar nmdar
12
severe hypoxia
12
hypoxia damaraland
8
mole-rats
8
adult mammals
8
naked mole-rats
8
nmdar antagonism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!