Whole organ tissue engineering encompasses a variety of approaches, including 3D printed tissues, cell-based self-assembly, and cellular incorporation into synthetic or xenogeneic extracellular matrix (ECM) scaffolds. This review article addresses the importance of whole organ tissue engineering for various solid organ applications, focusing on the use of extracellular (ECM) matrix scaffolds in such engineering endeavors. In this work, we focus on the emerging barriers to translation of ECM scaffold-based tissue-engineered organs and highlight potential solutions to overcome the primary challenges in the field. The 3 main factors that are essential for developing ECM scaffold-based whole organs are (1) recapitulation of a functional vascular tree, (2) delivery and orientation of cells into parenchymal void spaces left vacant in the scaffold during the antigen elimination and associated cellular removal processes, and (3) driving differentiation of delivered cells toward the appropriate site-specific lineage. The insights discussed in this review will allow the potential of allogeneic or xenogeneic ECM scaffolds to be fully maximized for future whole organ tissue-engineering efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502576PMC
http://dx.doi.org/10.1093/stcltm/szad046DOI Listing

Publication Analysis

Top Keywords

organ tissue
12
tissue engineering
12
extracellular matrix
8
ecm scaffolds
8
ecm scaffold-based
8
organ
5
ecm
5
current challenges
4
challenges future
4
future promise
4

Similar Publications

Construction of tetrahedral mesh phantom for Chinese women of childbearing age.

J Radiol Prot

January 2025

Department of Mechanical Engineering, University of Houston, Houston, 77204, UNITED STATES.

Although the Boundary Representation (BREP) method creates detailed surface phantoms of Chinese women of childbearing age, these phantoms cannot be directly used in Monte Carlo simulations. They must first be converted into voxel phantoms, a process that may diminish some of the inherent advantages of the surface phantoms. Therefore, the aim of this study is to construct a tetrahedral mesh (TM) phantom of Chinese women of childbearing age based on the BREP phantom, incorporating micron-level structural refinements to certain organ tissues while maintaining the original model's structure.

View Article and Find Full Text PDF

The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!