Myosin heavy chain 16 (MYH16) may significantly affect cell cycle progression. Nevertheless, there is a lack of evidence about the clinical relevance of MYH16 upregulation in pan cancers, including lung adenocarcinoma (LUAD). MYH16 expression patterns were evaluated in various bioinformatics databases using The Cancer Genome Atlas data set. Clinical and pathological factor data were employed to risk-stratify patients. The Kaplan-Meier plotter approach was used to estimate survival rates. Tumor immune infiltration was explored via the TIMER tool, and gene set enrichment analysis (GSEA) was used to identify the pathways involved in MYH16 upregulation. The results showed that MYH16 was abnormally upregulated in pan cancers, including LUAD. MYH16 expression induction in LUAD was found to be related to the tumor stage. Furthermore, MYH16 upregulation was correlated with LUAD development and worse overall survival, particularly in women. Notably, MYH16 overexpression in LUAD tissues corresponded to the amount of immune infiltration in the tumor. Additionally, univariate Cox hazard regression analysis revealed that MYH16 may be an independent prognostic indicator for LUAD. Furthermore, a nomogram was constructed according to MYH16 expression and clinical characteristics. BMP6 expression deficiency may be a key factor contributing to MYH16 upregulation in LUAD. Finally, GSEA demonstrated that MYH16 might mediate meiosis and gene silencing through RNA signaling pathways. This study, for the first time, showed that MYH16 upregulation in LUAD is associated with various risk factors, increased cancer aggressiveness, enhanced infiltration of tumor immune cells, and reduced survival rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23490 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!