Hybrid organic-inorganic formate perovskites, AB(HCOO)3, are a large family of compounds that exhibit a variety of phase transitions and diverse properties, such as (anti)ferroelectricity, ferroelasticity, (anti)ferromagnetism, and multiferroism. While many properties of these materials have already been characterized, we are not aware of any study that focuses on the comprehensive property assessment of a large number of formate perovskites. A comparison of the properties of materials within the family is challenging due to systematic errors attributed to different techniques or the lack of data. For example, complete piezoelectric, dielectric, and elastic tensors are not available. In this work, we utilize first-principles density functional theory based simulations to overcome these challenges and to report structural, mechanical, dielectric, piezoelectric, and ferroelectric properties of 29 formate perovskites. We find that these materials exhibit elastic stiffness in the range 0.5-127.0 GPa; highly anisotropic linear compressibility, including zero and even negative values; dielectric constants in the range 0.1-102.1; highly anisotropic piezoelectric response with the longitudinal values in the range 1.18-21.12 pC/N; and spontaneous polarizations in the range 0.2-7.8 μC/cm2. Furthermore, we propose and computationally characterize a few formate perovskites that have not been reported yet.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0159526DOI Listing

Publication Analysis

Top Keywords

formate perovskites
20
property assessment
8
properties materials
8
highly anisotropic
8
formate
5
perovskites
5
first-principles property
4
assessment hybrid
4
hybrid formate
4
perovskites hybrid
4

Similar Publications

The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.

View Article and Find Full Text PDF

Tuning the selectivity and improving the activity of photocatalysts are among the main bottlenecks for the conversion of CO to value-added chemicals. Recently, lead-free halide perovskites have been extensively investigated as photocatalysts for the photoreduction of CO. Herein, we report a composite photocatalyst using CsBiCl and Ir/IrO for the photoreduction of CO.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents synthesis and analysis of formamidinium copper formate (FMD-Cu), a magnetic material with a perovskite-like structure, revealing its quasi-one-dimensional antiferromagnetic properties.
  • - FMD-Cu shows a Néel temperature (TN) of 12.0 K and a strong intrachain coupling constant, indicating it behaves as an effective one-dimensional magnet.
  • - Heat capacity measurements and density functional theory (DFT) calculations support the presence of magnetic excitations associated with its antiferromagnetic ordering and highlight Jahn-Teller distortions in its copper ions as influencing factors for magnetic interactions.
View Article and Find Full Text PDF

Reaction-Diffusion and Crystallization Kinetics Modulation of Two-Step Deposited Tin-Based Perovskite Film via Reducing Atmosphere.

Angew Chem Int Ed Engl

December 2024

College of Chemistry and Chemical Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The two-step deposition method effectively mitigates the efficiency decline observed in tin-based perovskite solar cells (TPVSCs) with increasing cell area, stemming from film in-homogeneity. However, the high solubility of SnI in the conventionally used solvent isopropyl alcohol, coupled with the absence of effective modulation of reaction-diffusion process, results in inadequate film coverage and conversion. In this study, we introduce formic acid as the second-step solvent and introduce dithiothreitol (DTT) to regulate reaction-diffusion/crystallization kinetics meticulously.

View Article and Find Full Text PDF

Over 21% Efficient Cesium Lead Triiodide Solar Cell Enabled by Molten Salt Accelerating the Crystallization Processes.

Small

December 2024

Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

High-quality CsPbI with low defect density is indispensable for acquiring excellent photoelectric performance. Meticulous regulation of the CsPbI crystal growth processes is both feasible and efficacious in enhancing the quality of perovskite films. In this study, the cesium formate (CsFo) is introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!