Chickpea (ICC3761) protein hydrolysates have shown high in vitro antioxidant activity (AoxA) and antidiabetic potential. The aim of this study was to evaluate the in vivo activities (i.e., antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic) of chickpea albumin hydrolysates (CAH) obtained with alcalase and pepsin-pancreatin (fractions ≤ 10 kDa). The CAH were analyzed for degree of hydrolysis (DH), electrophoretic and chromatographic profiles, and in vitro AoxA (2,2'-azino-bis(3-ethylbenzothiazolin)-6-sulfonic acid [ABTS], 2,2-diphenyl-1-pycrilhydrazyl [DPPH]). They were also evaluated for AoxA, anti-inflammatory and hypo- and anti-hyperglycemic activities in BALB-c mice. The DH was 20% for the alcalase CAH and 50% for the pepsin-pancreatin CAH, while the AoxA by ABTS (1 mg/mL) was 64.8% and 64.9% and by DPPH (5 mg/mL) was 48.0% and 31.1%. In the in vivo AoxA assay, mice of non-damaged control and those treated with both CAH showed similar alkaline phosphatase values, control and pepsin-pancreatin treated groups had similar malondialdehyde levels, while treated and non-damaged control groups had higher glutathione levels than the damaged control. Liver histopathology revealed that the pepsin-pancreatin CAH mitigated most of the pathological changes associated with the induced oxidative damage. Both CAH (2 mg/ear) reduced croton oil-induced ear edema in mice. The α-glucosidase inhibition of CAH (100 mg/mL) was 31.1% (alcalase) and 52.4% (pepsin-pancreatin). Mice treated with alcalase CAH (100 mg/mL) and glibenclamide exhibited similar hypoglycemic activities, whereas only those treated with the pepsin-pancreatin CAH (200 mg/kg body weight) showed anti-hyperglycemic activity. The results indicate that CAH can be used as a source of bioactive peptides with antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.16744DOI Listing

Publication Analysis

Top Keywords

antioxidant anti-inflammatory
12
anti-inflammatory hypoglycemic
12
hypoglycemic anti-hyperglycemic
12
pepsin-pancreatin cah
12
cah
11
anti-hyperglycemic activity
8
protein hydrolysates
8
balb-c mice
8
anti-hyperglycemic activities
8
alcalase cah
8

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.

View Article and Find Full Text PDF

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.

Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.

Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!