AI Article Synopsis

  • The study explored how MUTYH gene alterations relate to various cancers and their potential treatable biomarkers, analyzing a large dataset of solid tumors from clinical genomic profiling.
  • It found that 2.8% of tumors had MUTYH alterations, notably with a higher prevalence in colorectal cancers, and these altered tumors had a higher tumor mutational burden and more specific KRAS alterations.
  • The results suggest that MUTYH mutations could be targetable with certain drugs, such as sotorasib for KRAS G12C, and highlight the need for research into treatments that leverage the increased immunogenicity of these cancers.

Article Abstract

The aim of this study was to determine the pan-cancer landscape of MUTYH alterations and the relationship between MUTYH mutations and potentially actionable biomarkers such as specific genomic alterations, tumor mutational burden, and mutational signatures. We used a large pan-cancer comprehensive genomic dataset from patients profiled (tissue next generation sequencing) during routine clinical care. Overall, 2.8% of 229 120 solid tumors had MUTYH alterations, of which 55% were predicted germline. Thirty tumor types had a 2% or greater MUTYH mutation rate. MUTYH-altered versus -WT cancers had significantly higher tumor mutational burden and more frequent alterations in KRAS G12C, but not in KRAS in general; these observations were statistically significant, especially in colorectal cancers. Across cancers, PD-L1 expression levels (immunohistochemistry) were not associated with MUTYH alteration status. In silico computation demonstrated that MUTYH mutational signatures are associated with higher levels of hydrophobicity (which may reflect higher immunogenicity of neoantigens) relative to several other signature types such as microsatellite instability. Survival of patients with MUTYH-altered versus -WT tumors was similar. In conclusion, comprehensive genomic profiling suggests that several features of MUTYH-altered cancers may be pharmacologically targetable. Drugs such as sotorasib (targeting KRAS G12C) and immune checkpoint inhibitors, targeting the increased mutational load and higher neo-antigen hydrophobicity/immunogenicity merit investigation in MUTYH-mutated malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836311PMC
http://dx.doi.org/10.1093/oncolo/oyad230DOI Listing

Publication Analysis

Top Keywords

kras g12c
12
tumor mutational
12
mutational burden
12
mutational signatures
12
signatures associated
8
associated mutyh
8
mutyh mutations
8
mutyh alterations
8
comprehensive genomic
8
mutyh-altered versus
8

Similar Publications

Impact of Sotorasib, a KRAS G12C Inhibitor, on the Pharmacokinetics and Therapeutic Window of Digoxin, a P-Glycoprotein Substrate.

Clin Pharmacol Drug Dev

January 2025

Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, USA.

Sotorasib is a small-molecule Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C inhibitor indicated for the treatment of KRAS G12C-driven cancers. KRAS G12C is a common mutation in solid tumors, including non-small cell lung cancer. In vitro studies suggested that sotorasib is a weak inhibitor of P-glycoprotein transporter.

View Article and Find Full Text PDF

Background: SMARCA4-deficient (BRG-1 deficient) primary thoracic tumors are rare aggressive malignancies associated with poor prognosis. While complete BRG-1 loss is well-documented, the clinical implications of partial BRG-1 deficiency remain unclear. This case report explores a case of mixed lung cancer with partial BRG-1 deficiency and KRAS G12C mutation, highlighting its clinical relevance, treatment challenges, and the importance of comprehensive molecular profiling.

View Article and Find Full Text PDF

Discovery of INCB159020, an Orally Bioavailable KRAS G12D Inhibitor.

J Med Chem

January 2025

Department of Discovery Chemistry, Incyte Research Institute, Incyte Corporation, Wilmington, Delaware 19803 United States.

The inhibition of mutant KRAS proteins has emerged as a promising approach for treating KRAS-driven cancers, as evidenced by the clinical success of KRAS G12C inhibitors. KRAS G12D, the most common mutant, promises significant expansion of the addressable patient population; however, the reduced nucleophilicity of aspartate compared to cysteine poses significant challenges in balancing sufficient potency with ADME properties to support oral exposure. Herein, we describe the discovery of KRAS G12D inhibitor (), which achieves oral exposure in nonhuman primate (NHP).

View Article and Find Full Text PDF

Introduction: Recent advances in the treatment of -mutant non-small cell lung cancer (NSCLC) have led to the development of KRAS inhibitors, such as sotorasib and adagrasib. However, resistance and disease progression remain significant challenges. In this study, we investigated the therapeutic potential of combining trastuzumab deruxtecan (T-DXd), an anti-HER2 antibody-drug conjugate, with sotorasib in -mutant NSCLC, while also evaluating HER2 expression in NSCLC samples.

View Article and Find Full Text PDF

Many agents that show promise in preclinical cancer models lack efficacy in patients due to patient heterogeneity that is not captured in traditional assays. To address this problem, we have developed GENEVA, a platform that measures the molecular and phenotypic consequences of drug perturbations within diverse populations of cancer cells at single-cell resolution, both and . Here, we apply GENEVA to study the KRAS G12C inhibitors, recapitulating known properties of these drugs and uncovering a previously unknown role for mitochondrial activation in cell death induced by KRAS inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!