A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in mice. | LitMetric

Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in mice.

Am J Physiol Renal Physiol

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States.

Published: October 2023

Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through upregulation of Wnt signaling. The mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the model. mice lacking endothelial GR showed more severe fibrosis in multiple organs compared with endothelial GR-replete mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The model is an important tool to study the mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis. The major finding of this work is that endothelial glucocorticoid receptor-mediated upregulation of Wnt signaling and concurrent hyperinflammation work synergistically to exacerbate organ fibrosis in a genetic mouse model of diabetes. This study adds to our understanding of diabetic renal fibrosis and has important implications for the use of metformin in this condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639025PMC
http://dx.doi.org/10.1152/ajprenal.00105.2023DOI Listing

Publication Analysis

Top Keywords

organ fibrosis
20
wnt signaling
16
endothelial glucocorticoid
12
fibrosis
11
loss endothelial
8
glucocorticoid receptor
8
absence endothelial
8
upregulation wnt
8
mouse model
8
fibrosis multiple
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!