Trigger-activatable antisense oligonucleotides have been widely applied to regulate gene function. Among them, caged cyclic antisense oligonucleotides (cASOs) maintain a specific topology that temporarily inhibits their interaction with target genes. By inserting linkers that respond to cell-specific endogenous stimuli, they can be powerful tools and potential therapeutic agents for specific types of cancer cells with low off-target effects on normal cells. Here, we developed enzyme-activatable cASOs by tethering two terminals of linear antisense oligonucleotides through a cathepsin B (CB) substrate peptide (Gly-Phe-Leu-Gly [GFLG]), which could be efficiently uncaged by CB. CB-activatable cASOs were used to successfully knock down two disease-related endogenous genes in CB-abundant PC-3 tumor cells at the mRNA and protein levels but had much less effect on gene knockdown in CB-deficient human umbilical vein endothelial cell (HUVECs). In addition, reduced nonspecific immunostimulation was found using cASOs compared with their linear counterparts. Further studies indicated that CB-activatable cASOs showed effective tumor inhibition in PC-3 tumor model mice through downregulation of translationally controlled tumor protein (TCTP) protein in tumors. This study applies endogenous enzyme-activatable cASOs for antitumor therapy in tumor model mice, which demonstrates a promising stimulus-responsive cASO strategy for cell-specific gene knockdown upon endogenous activation and ASO prodrug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425675 | PMC |
http://dx.doi.org/10.1016/j.omtn.2023.07.022 | DOI Listing |
Cell Rep Med
December 2024
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan. Electronic address:
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, McGill University, 801, Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.
Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong 518053, China.
Antisense oligonucleotide (ASO) was discovered several decades ago and initially used only as a research tool in the laboratory. In recent years, several ASO therapeutics have been developed for neurological disorders. Some of these therapeutics, including eteplirsen, golodirsen, viltolarsen, nusinersen and inotersen, have been approved by the Food and Drug Administration (FDA) and begun to draw the public's attention as an effective therapeutic approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!