The NEURON initiative (Neuroscience Education in Undergraduate Research, Outreach, and Networking) is a free program engaging first year students, including underrepresented minority (URM) students in Neuroscience and Cognitive Science (NSCS) at the University of Arizona (UA). The NEURON program builds on former Grass Foundation-sponsored workshops run by Dr. Ricoy (2010-2019) implementing hands-on and culturally responsive active learning curriculum with low-cost equipment from Backyard Brains to increase student retention of URM students in the sciences at Hispanic Serving Institutions (HSI). We present the implementation of the NEURON program at the onset of the COVID pandemic. Combining best practices of distance learning and peer mentoring, we conducted three-week projects exploring principles of neuroscience and neurophysiology. Enrollment and demographic data from NSCS at the UA demonstrate historical disenfranchisement and program attrition primarily impacting URM students. As an extension on previous URM peer mentorship programs in Neuroscience (Ricoy, presentation at Northern New Mexico College Research Symposium, 2010, 2011; presentation at Society for Advancement of Chicanos/Hispanics and Native Americas in Science, 2012), we leveraged low-cost equipment and remote sessions to advance the community of undergraduate mentors and pair with high school mentees on hands-on curriculum. Throughout the program, undergraduate mentors received guidance while crafting and delivering four laboratory lessons to mentees. By coordinating with a Title I school, we better connected with historically underserved students. Critical to this program was providing hands-on opportunities to students who were undergoing distance-based learning during the pandemic. Distribution of equipment allowed high school students to experiment remotely, guided by undergraduate mentors. The NEURON program met its objectives of fostering both mentors and mentees as burgeoning scientists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426826 | PMC |
http://dx.doi.org/10.59390/HMMK4371 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Data and Decision Science, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
For most researchers, academic publishing serves two goals that are often misaligned-knowledge dissemination and establishing scientific credentials. While both goals can encourage research with significant depth and scope, the latter can also pressure scholars to maximize publication metrics. Commercial publishing companies have capitalized on the centrality of publishing to the scientific enterprises of knowledge dissemination and academic recognition to extract large profits from academia by leveraging unpaid services from reviewers, creating financial barriers to research dissemination, and imposing substantial fees for open access.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFVet Dermatol
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
Background: Itch is a common clinical sign in skin disorders. While the neural pathways of itch transmission from the skin to the brain are well understood in rodents, the same pathways in dogs remain unclear. The knowledge gap hinders the development of effective treatments for canine itch-related disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!