Plant impedance spectroscopy: a review of modeling approaches and applications.

Front Plant Sci

Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Published: July 2023

Electrochemical impedance spectroscopy has emerged over the past decade as an efficient, non-destructive method to investigate various (eco-)physiological and morphological properties of plants. This work reviews the state-of-the-art of impedance spectra modeling for plant applications. In addition to covering the traditional, widely-used representations of electrochemical impedance spectra, we also consider the more recent machine-learning-based approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426379PMC
http://dx.doi.org/10.3389/fpls.2023.1187573DOI Listing

Publication Analysis

Top Keywords

impedance spectroscopy
8
electrochemical impedance
8
impedance spectra
8
plant impedance
4
spectroscopy review
4
review modeling
4
modeling approaches
4
approaches applications
4
applications electrochemical
4
spectroscopy emerged
4

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

Heparin concentration c in a blood extracorporeal circulation has been real-timely predicted based on the relaxation strength Δε at relaxation frequency f extracted by relaxation time distribution (RTD). The simulated extracorporeal circulation was conducted to optimize the number of Δε for the prediction of c using the porcine whole blood (WB) and low-leukocyte and -platelet blood (LLPB) under the condition of the gradual increment of c from 0 to 8 U/mL with constant flow rate and blood temperature. The experimental results show that among the three relaxation strengths Δε, Δε and Δε (in ascending order of frequency), Δε at f = 5.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.

View Article and Find Full Text PDF

This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!