Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447254 | PMC |
http://dx.doi.org/10.1038/s41586-023-06426-5 | DOI Listing |
Chromosome Res
January 2025
Saint-Petersburg State University, Saint-Petersburg, Russia.
Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes.
View Article and Find Full Text PDFCurr Opin Genet Dev
January 2025
MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France. Electronic address:
Membraneless subcompartments organize various activities in the cell nucleus. Some of them are formed through phase separation that is driven by the polymeric and multivalent nature of biomolecules. Here, we discuss the role of RNAs in regulating nuclear subcompartments.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czechia.
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany.
Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!