Glacier shrinkage and the development of post-glacial ecosystems related to anthropogenic climate change are some of the fastest ongoing ecosystem shifts, with marked ecological and societal cascading consequences. Yet, no complete spatial analysis exists, to our knowledge, to quantify or anticipate this important changeover. Here we show that by 2100, the decline of all glaciers outside the Antarctic and Greenland ice sheets may produce new terrestrial, marine and freshwater ecosystems over an area ranging from the size of Nepal (149,000 ± 55,000 km) to that of Finland (339,000  ±  99,000  km). Our analysis shows that the loss of glacier area will range from 22 ± 8% to 51 ± 15%, depending on the climate scenario. In deglaciated areas, the emerging ecosystems will be characterized by extreme to mild ecological conditions, offering refuge for cold-adapted species or favouring primary productivity and generalist species. Exploring the future of glacierized areas highlights the importance of glaciers and emerging post-glacial ecosystems in the face of climate change, biodiversity loss and freshwater scarcity. We find that less than half of glacial areas are located in protected areas. Echoing the recent United Nations resolution declaring 2025 as the International Year of Glaciers' Preservation and the Global Biodiversity Framework, we emphasize the need to urgently and simultaneously enhance climate-change mitigation and the in situ protection of these ecosystems to secure their existence, functioning and values.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-023-06302-2DOI Listing

Publication Analysis

Top Keywords

post-glacial ecosystems
8
climate change
8
ecosystems
6
future emergence
4
emergence ecosystems
4
ecosystems caused
4
caused glacial
4
glacial retreat
4
retreat glacier
4
glacier shrinkage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!