Rationale And Objectives: This study aimed to develop and validate a magnetic resonance imaging (MRI)-based radiomics nomogram combining radiomics signatures and clinical factors to differentiate between benign and malignant vertebral compression fractures (VCFs).
Materials And Methods: A total of 189 patients with benign VCFs (n = 112) or malignant VCFs (n = 77) were divided into training (n = 133) and validation (n = 56) cohorts. Radiomics features were extracted from MRI T1-weighted images and short-TI inversion recovery images to develop the radiomics signature, and the Rad score was constructed using least absolute shrinkage and selection operator regression. Demographic and MRI morphological characteristics were assessed to build a clinical factor model using multivariate logistic regression analysis. A radiomics nomogram was constructed based on the Rad score and independent clinical factors. Finally, the diagnostic performance of the radiomics nomogram, clinical model, and radiomics signature was validated using receiver operating characteristic and decision curve analysis (DCA).
Results: Six features were used to build a combined radiomics model (combined-RS). Pedicle or posterior element involvement, paraspinal mass, and fluid sign were identified as the most important morphological factors for building the clinical factor model. The radiomics signature was superior to the clinical model in terms of the area under the curve (AUC), accuracy, and specificity. The radiomics nomogram integrating the combined-RS, pedicle or posterior element involvement, paraspinal mass, and fluid sign achieved favorable predictive efficacy, generating AUCs of 0.92 and 0.90 in the training and validation cohorts, respectively. The DCA indicated good clinical usefulness of the radiomics nomogram.
Conclusion: The MRI-based radiomics nomogram, combining the radiomics signature and clinical factors, showed favorable predictive efficacy for differentiating benign from malignant VCFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2023.07.011 | DOI Listing |
Abdom Radiol (NY)
January 2025
Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
Objectives: To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric cancer (GC).
Methods: A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into training cohort (n = 125) and validation cohort (n = 50).
J Neurosurg
January 2025
Departments of1Neurosurgery.
Objective: Craniopharyngiomas are rare, benign brain tumors that are primarily treated with surgery. Although the extended endoscopic endonasal approach (EEEA) has evolved as a more reliable surgical alternative and yields better visual outcomes than traditional craniotomy, postoperative visual deterioration remains one of the most common complications, and relevant risk factors are still poorly defined. Hence, identifying risk factors and developing a predictive model for postoperative visual deterioration is indeed necessary.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu road, Shapingba district, Chongqing 400030, China.
Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.
Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).
Front Oncol
January 2025
Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
Introduction: This study predicted HRD score and status based on intra- and peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the use of PARPi in clinical.
Methods: A total of 106 and 95 patients with OC were included between January 2022 and November 2023 for predicting HRD score and status, respectively. Radiomics features were extracted and quantitatively analyzed from intra- and peri-tumor regions in the CT image.
Front Oncol
January 2025
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Purpose: To develop and validate a radiomics nomogram model for predicting the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2 cm in size.
Methods: In this study, 300 LUAD patients from our institution were randomly divided into the training cohort (n = 210) and an internal validation cohort (n = 90) at a ratio of 7:3, besides, we selected 65 patients from another hospital as the external validation cohort. The region of interest of the tumor was delineated on the computed tomography (CT) images, and radiomics features were extracted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!