Three dimensional (3D) scaffolds have huge limitations due to their low porosity, mechanical strength, and lack of direct cell-bioactive drug contact. Whereas bisphosphonate drug has the ability to stimulate osteogenesis in osteoblasts and bone marrow mesenchymal stem cells (hMSC) which attracted its therapeutic use. However it is hard administration low bioavailability, and lack of site-specificity, limiting its usage. The proposed scaffold architecture allows cells to access the bioactive surface at their apex by interacting at the scaffold's interfacial layer. The interface of 3D polycaprolactone (PCL) scaffolds has been coated with alendronate-modified hydroxyapatite (MALD) enclosed in a chitosan matrix, to mimic the native environment and stupulate the through interaction of cells to bioactive layer. Where the mechanical strength will be provided by the skeleton of PCL. In the MALD composite's hydroxyapatite (HAP) component will govern alendronate (ALD) release behavior, and HAP presence will drive the increase in local calcium ion concentration increases hMSC proliferation and differentiation. In results, MALD show release of 86.28 ± 0.22. XPS and SEM investigation of the scaffold structure, shows inspiring particle deposition with chitosan over the interface. All scaffolds enhanced cell adhesion, proliferation, and osteocyte differentiation for over a week without in vitro cell toxicity with 3.03 ± 0.2 kPa mechanical strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202300243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!