Converting natural forests to managed ecosystems generally increases soil nitrous oxide (NO) emission. However, the pattern and underlying mechanisms of NO emissions after converting tropical forests to managed plantations remain elusive. Hence, a laboratory incubation study was investigated to determine soil NO emissions of four land uses including forest, eucalyptus, rubber, and paddy field plantations in a tropical region of China. The effect of soil carbon (C) and nitrogen (N) fractions on soil NO emissions and related functional genes was also estimated. We found that the conversion of natural forests to managed forests significantly decreased soil NO emissions, but the conversion to paddy field had no effect. Soil NO emissions were controlled by both nitrifying and denitrifying genes in tropical natural forest, but only by nitrifying genes in managed forests and by denitrifying genes in paddy field. Soil total N, extractable nitrate, particulate organic C (POC), and hydrolyzable ammonium N showed positive relationship with soil NO emission. The easily oxidizable organic C (EOC), POC, and light fraction organic C (LFOC) had positive linear correlation with the abundance of AOA-amoA, AOB-amoA, nirK, and nirS genes. The ratios of dissolved organic C, EOC, POC, and LFOC to total N rather than soil C/N ratio control soil NO emissions with a quadratic function relationship, and the local maximum values were 0.16, 0.22, 1.5, and 0.55, respectively. Our results provided a new evidence of the role of soil C and N fractions and their ratios in controlling soil NO emissions and nitrifying and denitrifying genes in tropical soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122370 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Fashion Technology, PSG College of Technology, Coimbatore, 641004, India.
Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.
View Article and Find Full Text PDFChemosphere
January 2025
Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:
The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!