Evaluating natural background levels of heavy metals in shallow groundwater of the Pearl River Delta via removal of contaminated groundwaters: Comparison of three preselection related methods.

Environ Pollut

School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, China; Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang, China.

Published: October 2023

Assessing natural background levels (NBLs) in groundwater is a global concern. Knowledge on groundwater NBLs in urbanized areas is challenging due to the impact of complex human activities. Preselection related methods are common ones for assessing groundwater NBLs. The present study used three preselection related methods to assess groundwater heavy metals (lead, zinc, barium) NBLs in four groundwater units of the Pearl River Delta (PRD) where urbanization continues, and to identify the best one for assessing groundwater NBLs in urbanized areas. Here, methods include a preselection method (method-P), a preselection dominated method (method-PD), and a statistic dominated method (method-SD). Results showed that the method-PD was better than other two methods for assessing groundwater NBLs of heavy metals in the PRD. This is supported by the evidence that differences among heavy metals concentrations in various land-use types in residual datasets formed by the method-PD were insignificant. NBLs of lead in groundwater units I to IV assessed by the method-PD were 2.8 μg/L, 5.9 μg/L, 5.8 μg/L, and 2.6 μg/L, respectively. NBLs of zinc in groundwater units I to IV assessed by the method-PD were 30 μg/L, 180 μg/L, 160 μg/L, and 100 μg/L, respectively. NBLs of barium in groundwater units I to IV assessed by the method-PD were 120 μg/L, 120 μg/L, 90 μg/L, and 50 μg/L, respectively. Compared to the method-PD, the method-SD often underestimates groundwater NBLs of heavy metals because of using the experiential evaluation for residual datasets. The method-P also has an inaccurate evaluation of groundwater NBLs of heavy metals in comparison with the method-PD, owing to both of using the experiential evaluation and the absence of a function for outliers test. The method-P combining with an outliers test would be better than itself for assessing groundwater NBLs. Therefore, the method-PD is the first choice to be recommended for assessing groundwater NBLs in urbanized areas such the PRD. However, this method should not be taken into account for assessing groundwater NBLs in areas where groundwater Cl/Br mass ratios are invalid. Instead, the method-SD and the method-P combining with one outliers test may be choices, because no constraint for these two methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122382DOI Listing

Publication Analysis

Top Keywords

groundwater nbls
36
heavy metals
24
assessing groundwater
24
groundwater
17
groundwater units
16
nbls
14
preselection methods
12
nbls urbanized
12
urbanized areas
12
nbls heavy
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!