Energy shortages present significant challenges with the rising population and dramatic urbanization development. The effective utilization of high-value products generated from massive protein-rich waste has emerged as an excellent solution for mitigating the growing energy crisis. However, the traditional disposal and treatment of protein-rich waste, have been proven to be ineffective in resource utilization, which led to high chemical oxygen demand and water eutrophication. To effectively address this issue, hydrolysate and bioconversion products from protein-rich waste have been widely investigated. Herein, we aim to provide an overview of the valorization of protein-rich waste based on a comprehensive analysis of publicly available literature. Firstly, the sources of protein-rich waste with various quantities and qualities are systematically summarized. Then, we scrutinize and analyze the hydrolysis approaches of protein-rich waste and the versatile applications of hydrolyzed products. Moreover, the main factors influencing protein biotransformation and the applications of bioconversion products are covered and extensively discussed. Finally, the potential prospects and future directions for the valorization of protein-rich waste are proposed pertinently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166141 | DOI Listing |
Food Chem
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey. Electronic address:
Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.
According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.
View Article and Find Full Text PDFCommun Biol
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Larvae of the black soldier fly Hermetia illucens have potential as a natural waste recycler and subsequent use as protein-rich feed for livestock. A common question about the insect-farming processes is, what about the concerns of mass escape of insects from large populations? Here, we present a binary transgenic CRISPR/Cas9 system to generate wingless strain with the potential to address this issue. We identified gonad-specific promoters in vivo and evaluated use of the two strongest promoters, nanos and exuperantia, to drive Cas9 expression.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK.
In this study, we investigated the pyrolysis of cellulose, lignin, phenylalanine and textile wool waste using microscale thermogravimetric analysis (TGA) and a gram-scale fixed bed reactor. The pyrolysis was conducted at 500 °C and 1 bar N, using Al- and Li-doped mesoporous KIL-2 and ZSM-5 catalysts for comparison. Our results show that amorphous Al-KIL-2 catalyst was the most efficient in producing aromatics from cellulose and lignin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!