A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-model chain for climate change scenario analysis to support coastal erosion and water quality risk management for the Metropolitan city of Venice. | LitMetric

Multi-model chain for climate change scenario analysis to support coastal erosion and water quality risk management for the Metropolitan city of Venice.

Sci Total Environ

Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy; Risk Assessment and Adaptation Strategies Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy. Electronic address:

Published: December 2023

AI Article Synopsis

  • Climate change is leading to more frequent and severe hazardous weather events, significantly affecting fragile coastal zones, particularly in Metropolitan Venice.
  • A multi-model chain approach combines ocean dynamics and shoreline assessments to create a Bayesian Network-based coastal risk model, forecasting shoreline evolution and seawater quality from 2021 to 2050 under expected climate scenarios.
  • Results indicate an initial stable shoreline will experience erosion followed by accretion, alongside decreasing seawater quality due to increased turbidity, underlining the strong interplay between oceanographic factors and coastal risks.

Article Abstract

Under the influence of anthropogenic climate change, hazardous climate and weather events are increasing in frequency and severity, with wide-ranging impacts across ecosystems and landscapes, especially fragile and dynamic coastal zones. The presented multi-model chain approach combines ocean hydrodynamics, wave fields, and shoreline extraction models to build a Bayesian Network-based coastal risk assessment model for the future analysis of shoreline evolution and seawater quality (i.e., suspended particulate matter, diffuse attenuation of light). In particular, the model was designed around a baseline scenario exploiting historical shoreline and oceanographic data within the 2015-2017 timeframe. Shoreline erosion and water quality changes along the coastal area of the Metropolitan city of Venice were evaluated for 2021-2050, under the RCP8.5 future scenario. The results showed a destabilizing trend in both shoreline evolution and seawater quality under the selected climate change scenario. Specifically, after a stable period (2021-2030), the shoreline will be affected by periods of erosion (2031-2040) and then accretion (2041-2050), with a simultaneous decrease in seawater quality in terms of higher turbidity. The decadal analysis and sensitivity evaluation of the input variables demonstrates a strong influence of oceanographic variables on the assessed endpoints, highlighting how the factors are strongly connected. The integration of regional and global climate models with Machine Learning and satellite imagery within the proposed multi-model chain represents an innovative update on state-of-the-art techniques. The validated outputs represent a good promise for better understanding the varying impacts due to future climate change conditions (e.g., wind, wave, tide, and sea-level). Moreover, the flexibility of the approach allows for the quick integration of climate and multi-risk data as it becomes available, and would represent a useful tool for forward-looking coastal risk management for decision-makers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166310DOI Listing

Publication Analysis

Top Keywords

climate change
16
multi-model chain
12
seawater quality
12
change scenario
8
erosion water
8
water quality
8
risk management
8
metropolitan city
8
city venice
8
coastal risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: