Gastrodin destabilizes survivin and overcomes pemetrexed resistance.

Cell Signal

Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China. Electronic address:

Published: October 2023

Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2023.110851DOI Listing

Publication Analysis

Top Keywords

gastrodin
8
overcomes pemetrexed
8
pemetrexed resistance
8
survivin thr34
8
survivin
6
gastrodin destabilizes
4
destabilizes survivin
4
survivin overcomes
4
resistance survivin
4
survivin bifunctional
4

Similar Publications

RhoA/ROCK2 signaling pathway regulates Mn-induced alterations in tight junction proteins leading to cognitive dysfunction in mice.

Curr Res Toxicol

December 2024

Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Chang Le Xi Road, Xi'an,Shaanxi 710032, China.

Elevated manganese (Mn) exposure has been implicated in a broad spectrum of neurological disorders, including motor dysfunction and cognitive deficits. Previous studies have demonstrated that Mn induces neurotoxicity by disrupting the integrity of the blood-brain barrier (BBB), a critical regulator in maintaining central nervous system homeostasis and a contributing factor in the pathogenesis of numerous neurological disorders. However, the precise molecular mechanisms underlying Mn-induced BBB disruption and its role in facilitating neurotoxicity remain incompletely understood.

View Article and Find Full Text PDF

Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.

Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.

Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases.

View Article and Find Full Text PDF

Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing.

Int J Biol Macromol

January 2025

College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:

The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!