Measuring protein-membrane interaction through radial fluorescence correlation in 2 dimensions.

Methods Appl Fluoresc

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires, Argentina.

Published: September 2023

The cell membrane has a fundamental role in the cell life cycle but there's still much to be learned about its heterogeneous structure, regulation, and protein interaction. Additionally, the protein-membrane interaction is often overlooked when studying specific protein dynamics. In this work, we present a new tool for a better understanding of protein dynamics and membrane function using live cells and fast non-invasive techniques without the need for individual particle tracking. To this end, we used the 2D-pair correlation function (2D-pCF) to study protein interactions across cellular membranes. We performed numerical simulations and confocal experiments using a GAP-mEGFP fusion construct known to interact with the plasmatic membrane. Our results demonstrate that based on a quantitative correlation analysis as the 2D pair correlation of the signal intensities, is possible to characterize protein-membrane interactions in live systems and real-time. Combining experimental and numerical results this work presents a new powerful approach to the study of the dynamic protein-membrane interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2050-6120/acf118DOI Listing

Publication Analysis

Top Keywords

protein-membrane interaction
12
protein dynamics
8
measuring protein-membrane
4
interaction
4
interaction radial
4
radial fluorescence
4
correlation
4
fluorescence correlation
4
correlation dimensions
4
dimensions cell
4

Similar Publications

We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.

View Article and Find Full Text PDF

Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1.

Methods Mol Biol

January 2025

Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.

Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.

View Article and Find Full Text PDF

Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.

View Article and Find Full Text PDF

Anisotropic interactions for continuum modeling of protein-membrane systems.

J Chem Phys

December 2024

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.

View Article and Find Full Text PDF

1Parkinson's disease (PD) involves the aggregation of the protein alpha-synuclein, a process promoted by interactions with intracellular membranes. To study this phenomenon in neurons for the first time, we developed a fluorescence lifetime imaging (FLIM) method using Förster resonance energy transfer and self-quenching reporters, analyzed with a custom-built FLIM microscope. This method offers insights into aggregate formation in PD and can be broadly applied to probe protein-membrane interactions in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!