One of the most devastating diseases with the highest prevalence and mortality rate worldwide is lung cancer. Non-small cell lung cancer (NSCLC) is the subtype of lung cancer in 85% of cases. In this work, the expression levels of the STAT, SOCS and PIAS family genes involved in angiogenesis, proliferation and differentiation were examined. Using QRT-PCR technique, the expression level of STAT3 gene was assessed and tumor tissue samples had higher expression than normal tissue. In addition, the histological grade of adenocarcinoma was associated with the increase in STAT3 gene expression. The expression of the SOCS1 and SOCS2 genes in tumors was measured to be 0.58-fold and 0.36-fold lower than in healthy samples adjacent to the tumor, but this reduction in expression was not significant. In addition, when examining the relationship between the expression of SOCS1 and 2 and the clinical features of tumor samples, there was a significant decrease in the expression of the SOCS1 and 2 genes in the adenocarcinoma subtype. Compared to neighboring tumor samples, the expression of PIAS1 in the tumors was not different with controls. Our research revealed that tissue samples from adenocarcinoma had higher levels of STAT3 expression. Taken together, the mentioned genes can be suggested as possible targets for further studies in NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2023.154760DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
expression socs1
12
expression
10
gene expression
8
stat3 gene
8
tissue samples
8
tumor samples
8
genes
5
samples
5
expression analysis
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!