Cellular physiology has been mainly studied by using two-dimensional cell culture substrates which lack in vivo-mimicking extracellular environment and interactions. Thus, there is a growing need for more complex model systems in life sciences. Micro-engineered scaffolds have been proven to be a promising tool in understanding the role of physical cues in the co-regulation of cellular functions. These tools allow, for example, probing cell morphology and migration in response to changes in chemo-physical properties of their microenvironment. In order to understand how microtopographical features, what cells encounter in vivo, affect cytoskeletal organization and nuclear mechanics, we used direct laser writing via two-photon polymerization (TPP) to fabricate substrates which contain different surface microtopographies. By combining with advanced high-resolution spectral imaging, we describe how the constructed grid and vertical line microtopographies influence cellular alignment, nuclear morphology and mechanics. Specifically, we found that growing cells on grids larger than 10 × 20 μm and on vertical lines increased 3D actin cytoskeleton orientation along the walls of microtopographies and abolished basal actin stress fibers. In concert, the nuclei of these cells were also more aligned, elongated, deformed and less flattened, indicating changes in nuclear force transduction. Importantly, by using fluorescence lifetime imaging microscopy for measuring Förster resonance energy transfer for a genetically encoded nesprin-2 molecular tension sensor, we show that growing cells on these microtopographic substrates induce lower mechanical tension at the nuclear envelope. To conclude, here used substrate microtopographies modulated the cellular mechanics, and affected actin organization and nuclear force transduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.106069 | DOI Listing |
Biophys J
January 2025
Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:
Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Cornell University, Ithaca, New York 14853, USA.
Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, China.
The management of patients with myelodysplastic syndrome (MDS) refractory to hypomethylating agents (HMAs) remains a challenge with few reliably effective treatments. Preclinical studies have shown that the inhibition of the nuclear export protein XPO1 causes nuclear accumulation of p53 and disruption of NF-κB signaling; both of which are relevant targets for MDS. Selinexor is an XPO1 inhibitor with demonstrated efficacy in MDS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!