Grappling with the global ecological concern of the Aral Sea disaster, Uzbekistan exemplifies the urgent necessity of unravelling and addressing the complex Water-Energy-Food-Ecology (WEFE) nexus conflicts in arid regions, a critical task yet largely uncharted. Through the strategic process of 'Indicator Articulation - Weight Calibration - Nexus Coordination Quantification - Correlational Analysis', this work has developed a tailored framework that integrates a novel, context-specific indicator system, enabling an illumination of the intricate dynamics within the WEFE nexus in arid regions. During 2000-2018, the WEFE Nexus in Uzbekistan showed low-level coordination, indicating systemic imbalances. The Aral Sea crisis was the central disruptor, resulting in a moderately disordered ecological subsystem. Concurrently, disorder was observed in water resources, signaling inadequate management and potential overutilization. Furthermore, Coordination for energy and food were barely coordinated and under primary coordination respectively, underlining critical challenges in energy efficiency and food security. Over the last two decades, the WEFE Nexus has evolved towards a tighter interlinkage, yet the stability of this coupling coordination has experienced increased fluctuations, indicating that Uzbekistan's policies in the WEFE subsystems have been less stable in the last two decades and are in need of further adjustment and improvement. To address the challenges, we recommend a comprehensive approach that integrates technological, infrastructure, and policy solutions is needed. Specifically, promoting water-saving irrigation technology, renewing and maintaining outdated energy facilities, and raising public awareness of ecological protection are part of the essential measures. Furthermore, alleviating the contradiction between economic growth and ecological conservation remains a major challenge. Collectively, our constructed WEFE Nexus framework, with its extendable and context-specific indicators, holds significant potential for broad application in the analysis of multi-sectoral sustainability, particularly within arid regions globally, and forms a solid foundation for the formulation of effective, targeted policies and sustainable development strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118674 | DOI Listing |
Environ Manage
December 2024
Water, Environmental and Agricultural Resources Economics (WEARE) Research Group, Department of Agricultural Economics, Universidad de Córdoba, Campus Rabanales Building C5, 14014, Córdoba, Spain.
The complex relationship between water, energy, food, and ecological systems, known as the WEFE nexus, has emerged as a major topic in the debate about sustainable economic development and resource management. This subject is of special interest in Mediterranean coastal areas as rapid economic expansion driven by population growth, higher influx of tourists, and intensification of agriculture is leading to structural water scarcity conditions. However, addressing the diverse range of issues associated with the nexus is a difficult task due to the existence of intricate interconnections, interdependencies, and nonlinearities within and across its various components.
View Article and Find Full Text PDFSci Total Environ
July 2024
Technical University of Munich, Alte Akademie 14, Freising D-85354, Germany.
Among all the economic sectors, agricultural production is characterised by intensive natural resource use and a noticeable environmental footprint. The assessment of farm performance has been receiving special attention given the increasing scarcity of natural resources and growing environmental concerns. The nexus approach is particularly useful for such types of analysis since it reflects the complex interconnections among the sectors of water, energy, food and environment (WEFE).
View Article and Find Full Text PDFSci Total Environ
June 2024
Department of Water and Climate, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium; Water Science & Engineering Department, IHE Delft Institute for Water Education, 2611 AX Delft, the Netherlands.
Sci Total Environ
March 2024
Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstraße 37, D-80333 Munich, Germany; VISTA Inc., Gabelsbergerstraße 51, D-80333 Munich, Germany.
The Water-Energy-Food-Ecosystem (WEFE) nexus concept postulates that water, energy production, agriculture and ecosystems are closely interlinked. In transboundary river basins, different sectors and countries compete for shared water resources. In the Danube River Basin (DRB), possible expansion of agricultural irrigation is expected to intensify water competition in the WEFE nexus, however, trade-offs have not yet been quantified.
View Article and Find Full Text PDFJ Environ Manage
November 2023
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Grappling with the global ecological concern of the Aral Sea disaster, Uzbekistan exemplifies the urgent necessity of unravelling and addressing the complex Water-Energy-Food-Ecology (WEFE) nexus conflicts in arid regions, a critical task yet largely uncharted. Through the strategic process of 'Indicator Articulation - Weight Calibration - Nexus Coordination Quantification - Correlational Analysis', this work has developed a tailored framework that integrates a novel, context-specific indicator system, enabling an illumination of the intricate dynamics within the WEFE nexus in arid regions. During 2000-2018, the WEFE Nexus in Uzbekistan showed low-level coordination, indicating systemic imbalances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!