Liquid foams as sensors for the detection of biomarkers.

J Colloid Interface Sci

Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany. Electronic address:

Published: December 2023

Bioassays are widely used in healthcare to detect and quantify biomarkers, such as molecules or enzymes, which are crucial in monitoring diseases and health conditions. In developed countries, healthcare professionals use specialized reagents and equipment's to perform these bioassays. However, in less-industrialized countries, the creation of low cost, fast, and technically simple bioassays is required. Herein, we propose a simple approach for detecting biochemical markers using host-guest complexes containing a surfactant. When the biochemical marker is present, the host-guest complex is disrupted, releasing the surfactant and producing foam. The read-out mechanism relies on the change of foam volume as function of biomarker concentration. This change is quantifiable by the naked eye and can be measured with a simple ruler. We claim that the use of foams as sensing tool is an attractive, inexpensive, fast, and easy to handle on-site detection method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.08.061DOI Listing

Publication Analysis

Top Keywords

liquid foams
4
foams sensors
4
sensors detection
4
detection biomarkers
4
biomarkers bioassays
4
bioassays healthcare
4
healthcare detect
4
detect quantify
4
quantify biomarkers
4
biomarkers molecules
4

Similar Publications

Polymers are promising as stabilizers for developing eco-friendly foam extinguishing agents to solve the imminent pollution problem of fluorinated ones. Present work aims to elucidate the mechanisms by which polymers influence the performance of non-fluorinated foams. Specifically, it investigates the effects of three polymers-xanthan gum (XG), sodium carboxymethyl cellulose (CMCNa), and gelatin (GEL) on surface tension, conductivity, viscosity, foamability, foam stability, and rheology of the siloxane-based Gemini/sodium alpha-alkenyl sulfonate mixture.

View Article and Find Full Text PDF

Conventional in-situ hydrocarbon remediation technologies face challenges associated with high costs and low long-term efficacy. Aqueous foam injection presents a promising approach by enhancing volumetric sweeping efficiency. This study investigates the efficiency of polymer-enhanced foams (PEFs) for in-situ remediation of hydrocarbon-contaminated soil, focusing on the impact of Xanthan Gum (XG) biopolymer on foam stability against antifoaming diesel and the flow behavior in soil matrices.

View Article and Find Full Text PDF

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

This study investigates the development of a novel CO-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.

View Article and Find Full Text PDF

Utilizing MOFs Melt-Foaming to Design Functionalized Carbon Foams for 100% Deep-Discharge and Ultrahigh Capacity Sodium Metal Anodes.

ACS Nano

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Meltable metal-organic frameworks (MOFs) offer significant accessibility to chemistry and moldability for developing carbon-based materials. However, the scarcity of low melting point MOFs poses challenges for related design. Here, we propose a MOFs melt-foaming strategy toward Ni single atoms/quantum dots-functionalized carbon foams (NiSA/QD@CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!