The study discusses pitfalls in attempts to determine reliable surface tension values for the culture media and their extracts for two biosurfactant-producing yeast strains: Rhodotorula graminis and Rhodotorula babjevae. The values obtained from an Axisymmetric Drop Shape Analysis (ADSA) tensiometer showed systematically more and more shallow dynamic surface tension decays, suggesting a deterioration of their surface activity. The rate of this apparent surface activity loss was shown to depend on the sample history, with slower changes observed in vigorously shaken samples. On the other hand, the force-based Wilhelmy plate method provided apparently stable surface tension values of the order of 30 mN/m, in accordance with numerous previous literature reports on similar yeast biosurfactants. Both observations can be justified by the presence of an oil emulsified by biosurfactants produced by the yeast. We show that the odd (apparent) surface tension results are in fact the measurement artifacts resulting from slow demulsification and subsequent oil-spreading assisted by the yeast biosurfactants. The apparent surface tension reduction is thus indeed caused by the presence of biosurfactants, but its value does not represent their real adsorption in a thermodynamic sense. Consequently, the often reported in the literature very low surface tension values for the yeast culture media, of the order of 30 ± 5 mN/m, should be treated with caution, especially if the emulsion stabilized with the biosurfactant had not been fully destabilized prior to the measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!